Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

U.S. Navy ready to deploy laser for first time

By R&D Editors | February 18, 2014

In this Feb. 24, 2012 photo provided by the U.S. Navy, a high-speed camera captures the first full-energy shots from an electromagnetic launcher at a test facility in Dahlgren, Va. The Navy plans to deploy its first laser on a ship in 2014, and intends to test an electromagnetic rail gun prototype aboard a vessel within the following two years. AP Photo/U.S. Navy, John F. WilliamsSome of the Navy’s futuristic weapons sound like something out of “Star Wars,” with lasers designed to shoot down aerial drones and electric guns that fire projectiles at hypersonic speeds.

That future is now.

The Navy plans to deploy its first laser on a ship later this year, and it intends to test an electromagnetic rail gun prototype aboard a vessel within two years.

For the Navy, it’s not so much about the whiz-bang technology as it is about the economics of such armaments. Both costs pennies on the dollar compared with missiles and smart bombs, and the weapons can be fired continuously, unlike missiles and bombs, which eventually run out.

“It fundamentally changes the way we fight,” said Capt. Mike Ziv, program manager for directed energy and electric weapon systems for the Naval Sea Systems Command.

The Navy’s laser technology has evolved to the point that a prototype to be deployed aboard the USS Ponce this summer can be operated by a single sailor, he said.

The solid-state Laser Weapon System is designed to target what the Navy describes as “asymmetrical threats.” Those include aerial drones, speed boats and swarm boats, all potential threats to warships in the Persian Gulf, where the Ponce, a floating staging base, is set to be deployed.

Rail guns, which have been tested on land in Virginia, fire a projectile at six or seven times the speed of sound—enough velocity to cause severe damage. The Navy sees them as replacing or supplementing old-school guns, firing lethal projectiles from long distances.

But both systems have shortcomings.

Lasers tend to loser their effectiveness if it’s raining, if it’s dusty, or if there’s turbulence in the atmosphere, and the rail gun requires vast amount of electricity to launch the projectile, said Loren Thompson, defense analyst at the Lexington Institute.

“The Navy says it’s found ways to deal with use of lasers in bad weather, but there’s little doubt that the range of the weapon would be reduced by clouds, dust or precipitation,” he said.

Producing enough energy for a rail gun is another problem.

The Navy’s new destroyer, the Zumwalt, under construction at Bath Iron Works in Maine, is the only ship with enough electric power to run a rail gun. The stealthy ship’s gas turbine-powered generators can produce up to 78 MW of power. That’s enough electricity for a medium-size city—and more than enough for a rail gun.

In this July 30, 2012 photo provided by the U.S. Navy, a laser weapon sits temporarily installed aboard the guided-missile destroyer USS Dewey in San Diego. AP Photo/U.S. Navy, John F. WilliamsTechnology from the three ships in that DDG-1000 series will likely trickle down into future warships, said Capt. James Downey, the program manager.

Engineers are also working on a battery system to store enough energy to allow a rail gun to be operated on warships currently in the fleet.

Both weapon systems are prized because they serve to “get ahead of the cost curve,” Ziv said.

In other words, they’re cheap.

Each interceptor missile aboard a U.S. Navy warship costs at least $1 million apiece, making it cost-prohibitive to defend a ship in some hostile environments in which an enemy is using aircraft, drones, artillery, cruise missiles and artillery, Thompson said.

With a laser operating on about 30 kW of electricity—and possibly three times that in the future—the cost amounts to a few dollars per shot, Thompson said.

The “Star Wars” analogy isn’t a bad one.

Just like in the movies, the Navy’s laser directs a beam of energy that can burn through a target or fry sensitive electronics. Unlike the movie, the laser beam is invisible to the human eye.

The targeting system locks onto the target, sending a beam of searing heat. “You see the effect on what you are targeting but you don’t see the actual beam,” Ziv said.

Other nations are developing their own lasers, but the Navy is more advanced at this point.

Most folks are stunned to learn the technology is ready for deployment, Ziv said.

“It’s fair to say that there are other countries working on this technology. That’s safe to say. But I would also say that a lot of what makes this successful came from the way in which we consolidated all of the complexity into something that can be operated by (a single sailor),” he said.

Related Articles Read More >

Trump blocks new Harvard visas after $3 billion in frozen research funds
lab workers
‘Big Beautiful Bill Act’ proposes restoring full R&D expensing for 2025-2029
NSF caps indirect costs at 15% for new university grants
NSF chief quits as DOGE drives 55% budget cut and grant freeze
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE