Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Ultra-fast Stopwatch Made of Graphene Flakes

By R&D Editors | October 28, 2015

The external antenna on the detector captures long-wave infrared and terahertz radiation and funnels it to a graphene flake which is located in the center of the structure on a silicon carbide substrate. Image: M. MittendorffScientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR), working with colleagues from the U.S. and Germany, have developed a new optical detector from graphene which reacts very rapidly to incident light of all different wavelengths and even works at room temperature. It is the first time that a single detector has been able to monitor the spectral range from visible light to infrared radiation and right through to terahertz radiation. HZDR scientists are already using the new graphene detector for the exact synchronization of laser systems.

A tiny flake of graphene on silicon carbide and a futuristic-looking antenna, and there it is — the new graphene detector. Like no other single detector system which has gone before, this comparatively simple and inexpensive construct can cover the enormous spectral range from visible light all the way to terahertz radiation.

“In contrast to other semiconductors like silicon or gallium arsenide, graphene can pick up light with a very large range of photon energies and convert it into electric signals. We only needed a broadband antenna and the right substrate to create the ideal conditions,” says Dr. Stephan Winnerl, physicist at the Institute of Ion Beam Physics and Materials Research at the HZDR.

Back in 2013 Martin Mittendorff, who was a PhD student at HZDR at that time, had developed the precursor to the graphene detector. In his present position as a postdoc at the University of Maryland, he has now perfected it with his Dresden colleagues and with scientists from Marburg, Regensburg, and Darmstadt.

How it works: the graphene flake and antenna assembly absorbs the rays, thereby transferring the energy of the photons to the electrons in the graphene. These “hot electrons” increase the electrical resistance of the detector and generate rapid electric signals. The detector can register incident light in just 40 picoseconds — these are trillionths of a second.

The choice of substrate has now proved a pivotal step in improving the little light trap. “Semiconductor substrates used in the past have always absorbed some wavelengths but silicon carbide remains passive in the spectral range,” explains Winnerl. Then there is also an antenna which acts like a funnel and captures long-wave infrared and terahertz radiation. The scientists have therefore been able to increase the spectral range by a factor of 90 in comparison with the previous model, making the shortest detectable wavelength 1000 times smaller than the longest. By way of comparison, red light, which has the longest wavelength visible to the human eye, is only twice as long as violet light which has the shortest wavelength on the visible spectrum.

This optical universal detector is already being used at the HZDR for the exact synchronization of the two free-electron lasers at the ELBE Center for High-Power Radiation Sources with other lasers. This alignment is particularly important for “pump probe” experiments, as they are called, where researcher take one laser for the excitation of a material (“pump”) and then use a second laser with a different wavelength for the measurement (“probe”). The laser pulses must be exactly synchronized for such experiments. So the scientists are using the graphene detector like a stopwatch. It tells them when the laser pulses reach their goal, and the large bandwidth helps to prevent a change of detector from being a potential source of error. Another advantage is that all the measurements can take place at room temperature, obviating the need for the expensive and time-consuming nitrogen or helium cooling processes with other detectors.

Release Date: October 27, 2015
Source: Helmholtz-Zentrum Dresden-Rossendorf 

Related Articles Read More >

Illustration of ultracold atoms (gold) flowing frictionlessly along a laser boundary (green), representing the quantum phenomenon of edge states.
MIT physicists directly observe frictionless ‘edge state’ flow in ultracold atoms, offering a glimpse of super-efficient electronics
NTT Research scientist in cleanroom suit working on advanced photonic equipment
NTT Research bets light-based computing can tackles AI’s energy crisis
Scientists claim to generate world’s strongest terahertz radiation
SLAC fires up the world’s most powerful X-ray laser: LCLS-II ushers in a new era of science
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE