Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Ultrafast Battery Has Quarter-Million Cycle Life

By Zhejiang University | December 29, 2017

LED lights powered by ultrafast batteries designed by ZJU scientists.

Aluminum-ion battery (AIB) has significant merits of low cost, nonflammability, and high capacity of metallic aluminum anode based on three-electron redox properties. However, due to its inadequate cathodic performance, especially in terms of capacity, high-rate capability, and cycle life, AIB still cannot compete with Li-ion batteries and supercapacitors.

To address these issues, a research team led by GAO Chao, a professor in Zhejiang University’s Department of Polymer Science and Engineering, has proposed a “trihigh tricontinuous (3H3C) design” to achieve the ideal graphene film (GF-HC) cathode with excellent electrochemical performances.

The ordered assembling of graphene liquid crystal leads to a highly oriented structure satisfying requirement. High temperature annealing and concomitant “gas pressure” contribute to high-quality yet high channeling graphene structure simultaneously. Owing to this targeted “3H3C design,” the resulting aluminum-graphene battery (Al-GB) achieves an ultralong cycle life (91.7 percent retention after 250,000 cycles), unprecedented high-rate capability (111 mAh g−1 at 400 A g−1 based on the cathode), a wide operation temperature range (−40° to 120°C), unique flexibility, and nonflammability.

Targeted 3H3C design is proposed to essentially resolve the “short slab” cathode problem of AIB, achieving high-performance Al-GBs with record rate capability, cycle life, and operation temperature range among various kinds of rechargeable batteries. Together with future innovation in low-cost electrolyte, the emerging Al-GB provides a highly competitive choice for the capacitor-dominant high-power density energy storage system. In addition, the 3H3C design philosophy can also be extended to other electrode materials to effectively improve their electrochemical performances for practical electric power applications.

Relevant findings appeared on the Dec. 15 issue of Science Advances.

Source: Zhejiang University

Related Articles Read More >

The emerging materials shaping next-generation semiconductor electronics
24 R&D trends that redefined 2024
Graphene-based flowmeter sensor measures nano-rate fluid flows, Part 3: The sensor
Graphene-based flowmeter sensor measures nano-rate fluid flows, Part 2: The graphene context
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE