Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Ultrathin, Transparent and Flexible, 2-D Materials could lead to Thinnest-ever Imaging Devices

By R&D Editors | December 24, 2014

Rice University graduate student Sidong Lei displays a three-pixel prototype made with atomically thin layers of CIS. The new material developed at Rice shows promise for two-dimensional electronics. Courtesy of Jeff Fitlow/Rice UniversityHOUSTON — An atomically thin material may lead to the thinnest-ever imaging platform. Synthetic two-dimensional materials based on metal chalcogenide compounds could be the basis for super-thin devices, according to Rice University researchers. Although one such material, molybdenum disulfide, is being widely studied for its light-detecting properties, copper indium selenide (CIS) also shows extraordinary promise.

Sidong Lei, a graduate student in the Rice lab of materials scientist Pulickel Ajayan, synthesized CIS, a single-layer matrix of copper, indium and selenium atoms. Lei also built a prototype — a three-pixel, charge-coupled device (CCD) — to prove the material’s ability to capture an image.

The details appear in the December 2014 issue of the American Chemical Society journal Nano Letters.

Lei said the optoelectronic memory material could be an important component in two-dimensional electronics that capture images. “Traditional CCDs are thick and rigid, and it would not make sense to combine them with 2-D elements,” he said. “CIS-based CCDs would be ultrathin, transparent and flexible, and are the missing piece for things like 2-D imaging devices.”

The device traps electrons formed when light hits the material and holds them until released for storage, Lei said.

CIS pixels are highly sensitive to light, because the trapped electrons dissipate so slowly, said Robert Vajtai, a senior faculty fellow in Rice’s Department of Materials Science and NanoEngineering. “There are many two-dimensional materials that can sense light, but none are as efficient as this material,” he said. “This material is 10 times more efficient than the best we’ve seen before.”

Because the material is transparent, a CIS-based scanner might use light from one side to illuminate the image on the other for capture. For medical applications, Lei envisions CIS being combined with other 2-D electronics in tiny bio-imaging devices that monitor real-time conditions.

In the experiments for the newly reported study, Lei and colleagues grew synthetic CIS crystals, pulled single-layer sheets from the crystals and then tested the ability of the layers to capture light. He said the layer is about two nanometers thick and consists of a nine-atom-thick lattice. The material may also be grown via chemical vapor deposition to a size limited only by the size of the furnace, Lei said.

Because it’s flexible, CIS could also be curved to match the focal surface of an imaging lens system. He said this would allow for the real-time correction of aberrations and significantly simplify the entire optical system.

Co-authors of the paper are Rice graduate students Fangfang Wen and Yongji Gong; postdoctoral researchers Bo Li, Pei Dong, Anthony George and Liehui Ge; undergraduates Qizhong Wang, James Bellah and Yihan Huang; complimentary appointee Yongmin He of Lanzhou University, China; Jun Lou, an associate professor of materials science and nanoengineering, and Naomi Halas, the Stanley C. Moore Professor of Electrical and Computer Engineering and a professor of chemistry, biomedical engineering, physics and astronomy and of materials science and nanoengineering. Ajayan is Rice’s Benjamin M. and Mary Greenwood Anderson Professor in Engineering, professor of materials science and nanoengineering and of chemistry and chair of the Department of Materials Science and NanoEngineering.

The research was supported by the Army Research Office Multidisciplinary University Research Initiative, the Function Accelerated nanoMaterial Engineering Division of the Semiconductor Technology Advanced Research Network, the Microelectronics Advanced Research Association, the Defense Advanced Research Projects Agency, the Netherlands Organization for Scientific Research, the Robert A. Welch Foundation, the National Security Science and Engineering Faculty Fellowship and the Office of Naval Research.

Read the abstract at http://pubs.acs.org/doi/abs/10.1021/nl503505f

Ajayan Research Group: http://ajayan.rice.edu

Ternary CuIn7Se11: Towards Ultra-Thin Layered Photodetectors and Photovoltaic Devices: http://onlinelibrary.wiley.com/doi/10.1002/adma.201403342/abstract

Related Articles Read More >

Microsoft’s 4D geometric codes slash quantum errors by 1,000x
Berkeley Lab’s Dell and NVIDIA-powered ‘Doudna’ supercomputer to enable real-time data access for 11,000 researchers
QED-C outlines road map for merging quantum and AI
Quantum computing hardware advance slashes superinductor capacitance >60%, cutting substrate loss
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE