Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

University of Leicester space scientists involved in development of new breed of space vehicle

By R&D Editors | November 18, 2010

University of Leicester space scientists involved in development of new breed of space vehicle

University’s Space Research Centre developing conceptual design for a Mars ‘hopper’

Scientists and engineers at the internationally acclaimed Space Research Centre at the University of Leicester are developing a conceptual motor design for a Mars ‘hopping’ vehicle which should lead to a greater understanding of the ‘Red Planet’.

Their research findings have been published this month by the Proceedings of the Royal Society A (http://rspa.royalsocietypublishing.org/content/early/2010/11/11/rspa.2010.0438.short?rss=1 )

Robots exploring Mars can carry scientific instruments that measure the physical and chemical characteristics of the Martian surface and subsurface, analyse the environment and look for evidence of past or present life. Wheeled rovers have made extraordinary discoveries despite only exploring a small fraction of the planet.

The research has an international flavour. The University of Leicester has been working with a number of collaborators including Astrium Ltd in the UK and Center for Space Nuclear Research, Idaho, USA. The focus in the UK has been the development of a large-scale (400 kg) Mars Hopper concept that can fly in 1km ‘hops’. This is an exciting concept that should be considered further as a complement to rover and orbital missions.

The Hopper can collect fuel between hops by compressing gas from the Martian atmosphere and can fly quickly between sites, powered by a long-life radioisotope power source. It could therefore study hundreds of locations over a lifetime of several years.

The Leicester research focused on the rocket motor, looking at its size and materials.

Dr Richard Ambrosi, at the Leicester Space Research Centre, commented:

“The improved mobility and range of a hopping vehicle will tell us more about the evolution of Mars and of the Solar System and may answer questions as to whether there was life in the past, whether Mars was wetter in the past and if so where that water went.”

Dr Nigel Bannister added:  “The Hopper is different from other rovers because of its power source.   In one mode the heat source generates electric power to drive a compressor to gather the carbon dioxide propellant from the Martian atmosphere. The heat source then stores thermal energy and injects it into the propellant, which is accelerated out of a rocket nozzle to provide thrust.”

Dr Hugo Williams said:   “At Leicester we have concentrated on the motor and design features which translate into the performance of the vehicle.  

“Our findings have resulted in a hop range of 1km, for a relatively large vehicle with a large suite of scientific instruments on board.   We also looked at the geometry and the best materials for the motor core.

“Our interest in the materials aspect is particularly relevant because we are also engaged in collaborative research with our colleagues in Materials Engineering here at Leicester, and Queen Mary University of London to explore how material properties of materials for use in the space nuclear systems of the future can be enhanced through novel processing and manufacturing techniques.”

You can see a Royal Society interview with Dr Richard Ambrosi, Dr Hugo Williams and Dr Nigel Bannister on the following Website: http://rspa.royalsocietypublishing.org/content/early/2010/11/11/rspa.2010.0438/suppl/DC2

SOURCE

Related Articles Read More >

Satellite data sheds light on wetland health in cloud-covered regions
Alice & Bob outlines roadmap to 100 logical qubits by 2030
Idemitsu expands partnership with Enthought to accelerate battery material innovation
top 25 AI patent winners of 2024
From NVIDIA to SAP: How 25 global AI patent leaders fared in 2024
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE