Research & Development World

  • Home Page
  • Topics
    • Aerospace
    • Archeology
    • Automotive
    • Biotech
    • Chemistry
    • COVID-19
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Market Pulse
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
      • Software
    • Semiconductors
  • 2021 R&D 100 Award Winners
    • R&D 100 Awards
    • 2020 Winners
    • Winner Archive
  • Resources
    • Digital Issues
    • Podcasts
    • Subscribe
  • Global Funding Forecast
  • Webinars

Unlocking the Mystery of the Duck-billed Platypus’ Venom

By R&D Editors | January 14, 2010

Unlocking the Mystery of the Duck-billed Platypus’ Venom 

the male duck-billed platypus has stingers on its hind limbs that can deliver a painful venom
Despite its cuddly look, the male duck-billed platypus has stingers on its hind limbs that can deliver a painful venom. Scientists are unraveling its chemical composition.

Abandon any notion that the duck-billed platypus is a soft and cuddly creature — maybe like Perry the Platypus in the Phineas and Ferb cartoon. This platypus, renowned as one of the few mammals that lay eggs, also is one of only a few venomous mammals. The males can deliver a mega-sting that causes immediate, excruciating pain, like hundreds of hornet stings, leaving victims incapacitated for weeks.

Now, scientists are reporting an advance toward deciphering the chemical composition of the venom, with the first identification of a dozen protein building blocks. Their study is in the Journal of the American Chemical Society, a weekly publication.

Masaki Kita, Daisuke Uemura, and colleagues note that spurs in the hind limb of the male platypus can deliver the venom, a cocktail of substances that cause excruciating pain. The scientists previously showed that the venom triggers certain chemical changes in cultured human nerve cells that can lead to the sensation of pain. Until now, however, scientists did not know the exact components of the venom responsible for this effect.

To unlock its secrets, the scientists collected samples of platypus venom and used high-tech analytical instruments to separate and characterize its components. They identified 11 new peptides, or protein subunits, in the venom. Studies using nerve cells suggest that one of these substances, called Heptapeptide 1, is the main agent responsible for triggering pain. The substance appears to work by interacting with certain receptors in the nerve cells, they suggest.

Related Articles Read More >

TetraScience and PerkinElmer collaborate to provide cloud customers quicker improved scientific data outcomes
SwRI developing connected vehicle data exchange platform for Florida Department of Transportation
Sofar Ocean secures $39M to drive climate mitigation and adaptation
Mike McKee appointed as Dotmatics’ president to lead data-driven scientific research
2021 R&D Global Funding Forecast

Need R&D World news in a minute?

We Deliver!
R&D World Enewsletters get you caught up on all the mission critical news you need in research and development. Sign up today.
Enews Signup

R&D World Digital Issues

February 2020 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R& magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • 2021 Global Funding Forecast

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • Home Page
  • Topics
    • Aerospace
    • Archeology
    • Automotive
    • Biotech
    • Chemistry
    • COVID-19
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Market Pulse
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
      • Software
    • Semiconductors
  • 2021 R&D 100 Award Winners
    • R&D 100 Awards
    • 2020 Winners
    • Winner Archive
  • Resources
    • Digital Issues
    • Podcasts
    • Subscribe
  • Global Funding Forecast
  • Webinars