Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Virus Epidemic within our Genome Revealed

By R&D Editors | April 24, 2012

Virus Epidemic within our Genome Revealed

Ancient viruses infest the dark matter of our DNA
Ancient viruses infest the dark matter of our DNA

Scientists have uncovered clues as to how mammal genomes became riddled with viruses. The research reveals important information about the so-called dark matter of the human genome. For years, scientists have been struggling with the enigma that more than 90 percent of every mammal’s genome has no known function. A part of this ‘dark matter’ of genetic material is known to harbor pieces of DNA from ancient viruses that infected our ancestors going back as far as the age of the dinosaurs.

Researchers at Oxford University, the Aaron Diamond AIDS Research Center in New York, and the Rega Institute in Belgium wanted to know how these ancient viruses got into their hosts’ genomes in such abundance.

The team searched the genomes of 38 mammals covering a large range of species: from mouse, rat and bat to human, elephant and dolphin. Genetic material from all of the residing viruses was collected and then compared using mathematical models.

The findings revealed that one particular group of viruses had lost the ability to infect new cells. Their genetic material is still able to amplify itself, but the whole lifecycle of the virus is passed within a single cell: this change, they found, was followed by a dramatic proliferation of viral genetic material within the genomes.

A comparison with all of the other viruses in the genomes revealed this to be a universal phenomenon, and that loss of cell infectivity is associated with a roughly 30-fold increase in the abundance of the virus.

The pattern resembles that which we see during epidemic outbreaks, whereby a small proportion of infected people are often responsible for most of the spread of an infectious agent to the rest of the population. They are described as superspreaders.

“We know that much of the dark matter in our genome plays by its own rules, in the same way as an epidemic in an infectious disease, but operating over millions of years,” said Dr. Gkikas Magiorkinis of Oxford University’s Department of Zoology, lead author of the Wellcome Trust-supported study.

Dr. Robert Belshaw of Oxford University’s Department of Zoology, who led the research, said: “We suspect that these viruses are forced to make a choice: either to keep their ‘viral’ essence and spread between animals and species, or to commit to one genome and then spread massively within it. This is the story of the epidemic within every animal’s genome, a story which has been going on for 100 million years and which continues today.”

A report of the research, entitled “Env-less endogenous retroviruses are genomic superspreaders,” is published in the journal Proceedings of the National Academy of Sciences.

Related Articles Read More >

Berkeley Lab’s Dell and NVIDIA-powered ‘Doudna’ supercomputer to enable real-time data access for 11,000 researchers
QED-C outlines road map for merging quantum and AI
Quantum computing hardware advance slashes superinductor capacitance >60%, cutting substrate loss
Hold your exaflops! Why comparing AI clusters to supercomputers is bananas
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE