Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Virus might fight brain tumors better if armed with bacterial enzyme, study shows

By R&D Editors | January 13, 2011

Virus might fight brain tumors better if armed with bacterial enzyme, study shows

COLUMBUS, Ohio ? New research shows that oncolytic viruses, which are engineered to destroy cancer cells, might be more effective in treating deadly brain tumors if equipped with an enzyme that helps them penetrate the tumor.

The enzyme, called chondroitinase, helps the cancer-killing virus clear its way through the thickets of protein molecules that fill space between cells and impede the virus’s movement through the tumor, say researchers at the Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute who conducted the study.

When tested in animals transplanted with a human glioblastoma, the most common and deadly form of brain cancer, the enzyme-armed virus improved survival by 52 percent compared with controls and in some cases eliminated the tumor entirely.

The findings were published online in the journal Clinical Cancer Research.

“Our results show for the first time that an oncolytic virus with this enzyme can spread more effectively through the tumor and underscores the potential of using chondroitinases to enhance the capacity of oncolytic viruses to destroy cancer cells,” says study leader Balveen Kaur, associate professor of neurological surgery.

The enzyme is derived from the intestinal bacterium called Proteus vulgaris. The enzyme removes sugar chains that branch from molecules called proteoglycans, which fill the narrow spaces between cells. By cutting away these branches, the enzyme clears a path that helps the virus spread through the tumor.

During this study, Kaur and her collaborators injected human glioblastoma cells under the skin of eight animals, and then, after tumors developed, treated the tumors with the enzyme-armed virus. These mice survived an average of 28 days, with two remaining tumor-free after 80 days. Control animals, treated with a virus that lacked the enzyme, survived 16 days.

In another experiment, mice with human gliobastomas transplanted into the brain survived 32 days versus 21 days for control animals, an improvement of 52 percent. Again, two animals lived more than 80 days and showed no trace of the tumor afterward.

Additional studies showed that the enzyme-laden virus had penetrated tumors in the animals’ brain significantly better than the enzyme-free control virus.

“Overall, our results indicate that an oncolytic virus armed with this enzyme can have a significantly greater anticancer effect compared with a similar virus without the enzyme,” Kaur says.

SOURCE

Related Articles Read More >

Satellite data sheds light on wetland health in cloud-covered regions
Alice & Bob outlines roadmap to 100 logical qubits by 2030
Idemitsu expands partnership with Enthought to accelerate battery material innovation
top 25 AI patent winners of 2024
From NVIDIA to SAP: How 25 global AI patent leaders fared in 2024
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE