Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Want to print your own cell phone microscope for pennies?

By R&D Editors | September 16, 2014

At one o’clock in the morning, layers of warm plastic are deposited on the platform of the 3-D printer that sits on scientist Rebecca Erikson’s desk. A small plastic housing, designed to fit over the end of a cell phone, begins to take shape. Pulling it from the printer, Erikson quickly pops in a tiny glass bead and checks the magnification.

In the space of about 10 mins, Erikson, who works for the U.S. Dept. of Energy (DOE)’s Pacific Northwest National Laboratory (PNNL), has developed exactly what her colleagues asked for—a sleek, simple and inexpensive way to turn a cell phone into a high-powered, high-quality microscope that can be used to identify biological samples in the field.

Using glass spheres as a microscope lens is not a new idea, optically, but the small size of the housing combined with very high magnification and extremely low cost is what makes this device practical.

“We believe it can fill a need for professional first responders, and also for teachers and students in the classroom, health workers and anyone who just wants an inexpensive microscope readily available,” said Erikson an applied physicist.

There are a few other devices that use a variety of approaches to leverage a cell phone camera into a microscope, but many are bulky, expensive, hard to align, or are lower powered. The PNNL team developed an inexpensive version that can magnify a sample by 1000 times. For specific applications, lower magnifications are easily achievable.

PNNL made the design specifications available, free of charge, to the public so anyone with access to a 3-D printer can make their own microscope.

The microscope slips over the camera lens of the cell phone and is no thicker than a phone case. It’s designed to fit several popular cell phone brands and tablets. The material cost, not including the printer, is under $1.

Can identify “suspicious powder” threats
Low cost was a driver in the development. The microscope needed to be so cheap it could literally be thrown away—if it gets contaminated. As part of PNNL’s national security programs, Erikson’s colleagues were working on an internally funded research and development project targeting a specific Dept. of Homeland Security need for rapid bio detection technologies.

“We interviewed a lot of first responders, public health labs and civil support teams,” said biochemist Cheryl Baird. “They told us the first thing they do when a suspicious powder sample gets to the lab, is to put it under the microscope. An inexpensive, yet powerful microscope in the field could be used to quickly determine whether the material is a threat or a hoax. Combine the microscope with the picture sharing capability of a smart phone and now practically anyone can evaluate a sample at the source and have a trained microbiologist located in a lab elsewhere interpret the results within minutes.”

The sample must first be put into a slide for viewing. If the sample turns out to be a toxic biological material, or the responder is looking at a blood sample, the slip-on microscope can be disposed of and the cell phone fitted with a new microscope for additional work.

Using inexpensive glass beads traditionally used for reflective pavement markings at airports, the PNNL team has demonstrated 1000X magnification, which is necessary to see tiny pathogens. They have also made a 350X version, which is adequate to identify parasites in a blood samples or protozoa in drinking water. A 100X version enables children to investigate common items like salt grains and flower petals in much greater detail.

Source: Pacific Northwest National Laboratory

Related Articles Read More >

How IBM’s quantum architecture could design materials physics can’t yet explain
2025 R&D layoffs tracker hits 132,075 as Amazon CEO signals AI will cut more jobs
Probiotics power a bioresorbable battery that can run from 4 to 100+ minutes
Korean engineers show off ultra-light prosthetic hand with single-motor thumb
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE