Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Water Droplet and Pipet Untangle DNA

By R&D Editors | February 27, 2015

Researchers have long sought an efficient way to untangle DNA in order to study its structure – neatly unraveled and straightened out – under a microscope. Now, chemists and engineers at KU Leuven in Belgium have devised a strikingly simple and effective solution: they inject genetic material into a droplet of water and use a pipet tip to drag it over a glass plate covered with a sticky polymer. The droplet rolls like a ball over the plate, sticking the DNA to the plate surface. The unraveled DNA can then be studied under a microscope. The researchers described the technique in the journal ACS Nano. 

There are two ways to decode DNA: DNA sequencing and DNA mapping. In DNA sequencing, short strings of DNA are studied to determine the exact order of nucleotides – the bases A, C, G, and T – within a DNA molecule. The method allows for highly-detailed genetic analysis, but is time- and resource-intensive. 

For applications that call for less detailed analysis, such as determining if a given fragment of DNA belongs to a virus or a bacteria, scientists opt for DNA mapping. This method uses the longest possible DNA fragments to map the DNA’s ‘big picture’ structure. 

DNA mapping can be used together with fluorescence microscopy to quickly identify DNA’s basic characteristics.

In this study, researchers describe an improved version of a DNA mapping technique they previously developed called fluorocoding, explains chemist Jochem Deen: “In fluorocoding, the DNA is marked with a colored dye to make it visible under a fluorescence microscope. It is then inserted into a droplet of water together with a small amount of acid and placed on a glass plate. The DNA-infused water droplet evaporates, leaving behind the outstretched DNA pattern.”

“But this deposition technique is complicated and does not always produce the long, straightened pieces of DNA that are ideal for DNA mapping,” he continues. It took a multidisciplinary team of chemists and engineers specialized in how liquids behave to figure out how to optimize the technique.

“Our improved technique combines two factors: the natural internal flow dynamics of a water droplet and a polymer called Zeonex that binds particularly well to DNA,” explains engineer Wouters Sempels.

The ‘rolling droplet’ technique is simple, low-cost and effective: “We used a glass platelet covered with a layer of the polymer Zeonex. Instead of letting the DNA-injected water droplet dry on the plate, we used a pipet tip to drag it across the plate. The droplet rolls like a ball over the plate, sticking the DNA to the plate’s surface. The strings of DNA ‘captured’ on the plate in this way are longer and straighter,” explains Sempels.

To test the technique’s effectiveness, the researchers applied it to the DNA of a virus whose exact length was already known. The length of the DNA captured using the rolling droplet technique matched the known length of the virus’ DNA.

The rolling droplet technique could be easily applied in a clinical setting to quickly identify DNA features, say the researchers. “Our technique requires very little start-up materials and can be carried out quickly. It could be very effective in determining whether a patient is infected with a specific type of virus, for example. In this study, we focused on viral DNA, but the technique can just as easily be used with human or bacterial DNA,” says Sempels.

The technique could eventually also be helpful in cancer research and diagnosis. “After further refining this technique, we could be able to quickly tell the difference between healthy cells and cancer cells,” says Sempels.

Release Date: February 27, 2015
Source: KU Leuven  

Related Articles Read More >

Eli Lilly facility
9 R&D developments this week: Lilly builds major R&D center, Stratolaunch tests hypersonic craft, IBM chief urges AI R&D funding
professional photo of wooly mammoth in nature --ar 2:1 --personalize sq85hce --v 6.1 Job ID: 47185eaa-b213-4624-8bee-44f9e882feaa
Why science ethicists are sounding skepticism and alarm on ‘de-extinction’
ALAFIA system speeds complex molecular simulations for University of Miami drug research
3d rendered illustration of the anatomy of a cancer cell
Funding flows to obesity, oncology and immunology: 2024 sales data show where science is paying off
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE