Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Why Protein Mutations Lead to Parkinson’s

By R&D Editors | January 22, 2015

Researchers at the San Diego Supercomputer Center (SDSC) at the University of California, San Diego, have shown for the first time why protein mutations lead to the familial form of Parkinson’s disease.
 
The study, available online in prepublication in ACS Chemical Neuroscience and partially funded by the National Institutes of Health, focuses specifically on alpha-synuclein (αsyn), a protein whose function in healthy tissue is unknown but which represents the major structural component of Lewy bodies – protein clumps found in the brains of individuals with Parkinson’s disease and other neurological disorders.
 
Parkinson’s disease is characterized by impairment or deterioration of neurons in an area of the brain known as the substantia nigra. In the familial form of the disorder, a set of mutations in αsyn had been identified but what was unknown was the molecular mechanism by which these mutations caused disease.
 
“As an unstructured protein, αsyn is sometimes called ‘chameleon’ because it has no stable configuration and constantly changes its shape,” said lead author Igor F. Tsigelny, a research scientist with SDSC as well as the UC San Diego Moores Cancer Center and the Department of Neurosciences. “Nevertheless when these changes seem to be random on first glance, they have specific intrinsic rules that control the evolution of the αsyn shape.”
 
Using SDSC’s data-intensive Gordon supercomputer to find hidden rules of the conformational changes of αsyn, researchers conducted extensive calculations of the possible evolution of the protein structure.
 
Through computer modeling, researchers showed that αsyn mostly can bind the membrane with four main sites, or zones. While binding was shown to be superficial by three of the sites, one site – Zone 2 – had a particular affinity for the membrane. Researchers found that αsyn contacting the neuron membrane in that site immediately and deeply penetrated it, which led to the creation of ring oligomers in the membrane, and eventually opened pores that allowed an uncontrolled influx of ions that ultimately killed the cell. Most of the mutations changed the shape of the protein in a way that increased binding of αsyn to the membrane by this zone.
 
These theoretical predications were confirmed by a set of experimental methods conducted in the laboratory of Eliezer Masliah, a professor in UC San Diego’s Department of Neurosciences. “Previous to this study, researchers could not say why these mutations caused Parkinson’s disease,” said Tsigelny. “The discovery of Zone 2 as the distinguishing feature of the membrane-penetrating configurations of αsyn paves the road to possible prevention of such a binding. Now we can affect this region with rational drug design, for example by creating compounds that would change its electrostatic profile.”
 
Source: USCD
 

Related Articles Read More >

Eli Lilly facility
9 R&D developments this week: Lilly builds major R&D center, Stratolaunch tests hypersonic craft, IBM chief urges AI R&D funding
professional photo of wooly mammoth in nature --ar 2:1 --personalize sq85hce --v 6.1 Job ID: 47185eaa-b213-4624-8bee-44f9e882feaa
Why science ethicists are sounding skepticism and alarm on ‘de-extinction’
ALAFIA system speeds complex molecular simulations for University of Miami drug research
3d rendered illustration of the anatomy of a cancer cell
Funding flows to obesity, oncology and immunology: 2024 sales data show where science is paying off
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE