Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

World-first to provide building blocks for new nano devices

By R&D Editors | November 23, 2010

World-first to provide building blocks for new nano devices

Scientists at The University of Nottingham have made a major breakthrough that could help shape the future of nanotechnology, by demonstrating for the first time that 3-D molecular structures can be built on a surface.

The discovery could prove a significant step forward towards the development of new nano devices such as cutting-edge optical and electronic technologies and even molecular computers.

In a paper published in the prestigious journal Nature Chemistry, the team of chemists and physicists at Nottingham have shown that by introducing a ‘guest’ molecule they can build molecules upwards from a surface rather than just 2-D formations previously achieved.

A natural biological process known as ‘self-assembly’ meant that once the scientists introduced other molecules on to a surface their host then spontaneously arranged them into a rational 3-D structure.

Professor Neil Champness said: “It is the molecular equivalent of throwing a pile of bricks up into the air and then as they come down again they spontaneously build a house.

“Until now this has only been achievable in 2-D, so to continue the analogy the molecular ‘bricks’ would only form a path or a patio but our breakthrough now means that we can start to build in the third dimension. It’s a significant step forward to nanotechnology.”

Previously, scientists have employed a technique found in nature of using hydrogen bonds to hold DNA together to build two-dimensional molecular structure.

The new process involved introducing a guest molecule – in this case a ‘buckyball’ or C60 – on to a surface patterned by an array of tetracarboxylic acid molecules. The spherical shape of the buckyballs means they sit above the surface of the molecule and encourage other molecules to form around them. It offers scientists a completely new and controlled way of building up additional layers on the surface of the molecule.

The work is the culmination of four years’ of research led by Professors Champness and Beton from the School of Chemistry and the School of Physics and Astronomy, which has been funded with a total of £3.5 million from the Engineering and Physical Sciences Research Council.

The research paper is the second significant breakthrough to be reported by the team in recent weeks. In September, a paper in Nature Communications revealed they had demonstrated for the first time the way in which an irregularly shaped molecule is adsorbed on a surface. It represents a step towards being able to harness the potential of these molecules, which have extremely useful properties, by organising them to form structures. They could offer a way of building new data storage devices that are orders of magnitude smaller than their existing silicon-based counterparts.

SOURCE

Related Articles Read More >

Satellite data sheds light on wetland health in cloud-covered regions
Alice & Bob outlines roadmap to 100 logical qubits by 2030
Idemitsu expands partnership with Enthought to accelerate battery material innovation
top 25 AI patent winners of 2024
From NVIDIA to SAP: How 25 global AI patent leaders fared in 2024
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE