Research & Development World

  • Home Page
  • Topics
    • Aerospace
    • Archeology
    • Automotive
    • Biotech
    • Chemistry
    • COVID-19
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Market Pulse
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
      • Software
    • Semiconductors
  • 2021 R&D 100 Award Winners
    • R&D 100 Awards
    • 2020 Winners
    • Winner Archive
  • Resources
    • Digital Issues
    • Podcasts
    • Subscribe
  • Global Funding Forecast
  • Webinars

World’s first continuous-wave, tunable diamond Raman lasers

By R&D Editors | January 31, 2014

Element Six, a Santa Clara, Calif.-based manufacturer of synthetic diamond supermaterials and member of the De Beers Group of Companies, has announced that the Univ. of Strathclyde has successfully demonstrated two notable high-power laser research developments—the first ever tunable diamond Raman laser and the first continuous-wave (CW) laser—both using Element Six’s synthetic diamond material. These two achievements prove diamond’s viability as a material for solid-state laser engineering, even in the most demanding intracavity applications.

Founded in 1796 in Glasgow, Scotland, the Univ. of Strathclyde began its laser research prior to the formation of a dedicated Institute of Photonics in 1996. In 2006, the University sought to partner with Element Six, the only company capable of providing the high optical quality material demanded by high-power lasers, in an effort to further enhance its high-power laser research. Synthetic diamond was selected for the material’s unique properties, including very high thermal conductivity and transparency over a very broad range of wavelengths.

“Although continuously operating and tunable Raman lasers have been demonstrated in the past with other materials, these materials have very poor thermal conductivity, which severely limited the output powers that could be generated. Diamond removes this barrier and has paved the way for multi-watt output powers at wavelengths that are difficult to generate with conventional lasers,” said Senior Research Fellow Alan Kemp, Ph.D., who, with Research Team Leader Jennifer Hastie, Ph.D., and Prof. Martin Dawson, leads this work at the Univ. of Strathclyde’s Institute of Photonics. “The successful demonstration of a diamond Raman laser indicates that diamond is now a viable material for solid-state laser engineering even in the most demanding applications. It is this potential that we hope to exploit in the future in continued partnership with Element Six.”

The university achieved Raman laser operation by placing Element Six’s synthetic diamond within the cavity of another laser. Because Element Six synthetic diamond has very low optical loss, the university was able to demonstrate the first continuously operating diamond Raman laser, without the requirement for high intensity pulsed laser light. This is important for applications that require the precision of a continuously operating laser, rather than the substantial power of a pulsed laser, such as spectroscopic detection of trace gases and some demanding medical procedures, such as ophthalmic surgery.

The university used a tunable semiconductor disk laser to achieve tuning of the Raman laser color. This laser was also cooled using a single crystal diamond heat spreader from Element Six, allowing it to generate multiple watts of tunable output power; then, a second piece of diamond was inserted into this laser, thus demonstrating the first ever tunable diamond Raman laser.

“It has been our pleasure to partner with a leading research organization such as the University of Strathclyde for 8 years, in pursuit of this significant development,” said Adrian Wilson, head of the Technologies division at Element Six. “It’s very fulfilling to see that the unique low loss and low birefringence of Element Six synthetic diamond are vital in helping the university achieve these results. We have only scratched the surface as it relates to high-optical quality diamond in solid-state laser engineering, and we look forward to continuing our partnership with the University of Strathclyde to explore synthetic diamond’s potential for future applications such as these.”

Source: Element Six

 

Related Articles Read More >

Submit your design for the 2022 Packaging Innovation Awards
What are nanoparticles?
New Ultrathin Capacitor Could Enable Energy-Efficient Microchips
Advanced fluoropolymer materials excel in harsh oil recovery environments
2021 R&D Global Funding Forecast

Need R&D World news in a minute?

We Deliver!
R&D World Enewsletters get you caught up on all the mission critical news you need in research and development. Sign up today.
Enews Signup

R&D World Digital Issues

February 2020 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R& magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • 2022 Global Funding Forecast

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • Home Page
  • Topics
    • Aerospace
    • Archeology
    • Automotive
    • Biotech
    • Chemistry
    • COVID-19
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Market Pulse
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
      • Software
    • Semiconductors
  • 2021 R&D 100 Award Winners
    • R&D 100 Awards
    • 2020 Winners
    • Winner Archive
  • Resources
    • Digital Issues
    • Podcasts
    • Subscribe
  • Global Funding Forecast
  • Webinars