Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • 2025 R&D 100 Award Winners
    • 2025 Professional Award Winners
    • 2025 Special Recognition Winners
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
    • Content submission guidelines for R&D World
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

World’s First Parallel Computer Based on Biomolecular Motors

By R&D Editors | February 29, 2016

A study reports a new parallel-computing approach based on a combination of nanotechnology and biology that can solve combinatorial problems. The approach is scalable, error-tolerant, energy-efficient and can be implemented with existing technologies. The pioneering achievement, published in Proceedings of the National Academy of Sciences, was developed by researchers from the Technische Universität Dresden and the Max Planck Institute of Molecular Cell Biology and Genetics, Dresden in collaboration with international partners from Canada, England, Sweden, the US, and the Netherlands.

Conventional electronic computers have led to remarkable technological advances in the past decades, but their sequential nature — they process only one computational task at a time — prevents them from solving problems of combinatorial nature, such as protein design and folding, and optimal network routing. This is because the number of calculations required to solve such problems grows exponentially with the size of the problem, rendering them intractable with sequential computing. Parallel computing approaches can, in principle, tackle such problems, but the approaches developed so far have suffered from drawbacks that have made up-scaling and practical implementation very difficult. The recently reported parallel computing approach aims to address these issues by combining well-established nanofabrication technology with molecular motors that are highly energy efficient and inherently work in parallel.

In this approach, which the researchers demonstrate on a benchmark combinatorial problem that is notoriously hard to solve with sequential computers, the problem to be solved is ‘encoded’ into a network of nanoscale channels. This is done, on the one hand, by mathematically designing a geometrical network that is capable of representing the problem, and on the other hand by fabricating a physical network based on this design using so-called lithography, a standard chip-manufacturing technique.

The network is then explored in parallel by many protein filaments (here actin filaments or microtubules) that are self-propelled by a molecular layer of motor proteins (here myosin or kinesin) covering the bottom of the channels. The design of the network using different types of junctions automatically guides the filaments to the correct solutions to the problem. This is realized by different types of junctions, causing the filaments to behave in two different ways. As the filaments are rather rigid structures, turning to the left or right is only possible for certain angles of the crossing channels. By defining these options (split junctions and pass junctions) the scientists achieved an ‘intelligent’ network giving the filaments the opportunity either to cross only straight or to decide between two possible channels with a 50/50 probability.

The time to solve combinatorial problems of size N using this parallel-computing approach scales approximately as N2, which is a dramatic improvement over the exponential (2N) time scales required by conventional, sequential computers. Importantly, the approach is fully scalable with existing technologies and uses orders of magnitude less energy than conventional computers, thus circumventing the heating issues that are currently limiting the performance of conventional computing.

Related Articles Read More >

Could AI smell cancer? Science says yes
R&D World announces 2025 R&D 100 Professional Award Winners
Elsevier’s 121 million data point database is now searchable by AI
6 R&D advances this week: a quantum computer in space and a record-breaking lightning bolt
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Sign up for R&D World’s newsletter
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • 2025 R&D 100 Award Winners
    • 2025 Professional Award Winners
    • 2025 Special Recognition Winners
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
    • Content submission guidelines for R&D World
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE