Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

X-Ray Diffraction May Help Stop ‘Kissing Bug’

By R&D Editors | October 20, 2010

If finding the cure for a fungus and parasite that affects millions of people were the subject of a detective show, University of Missouri Chemistry Professor John Tanner would be the forensic expert in the lab, using high-tech equipment to make a model that could eventually solve the crime.

Tanner, who also teaches chemistry in the College of Arts and Science, has joined forces with Pablo Sobrado, an assistant professor of biochemistry at Virginia Tech, to study a unique enzyme found on two “crime scenes”: in Aspergillus fumigatus, a fungus that causes pulmonary diseases in immuno-compromised people; and in a blood-sucking insect prevalent in South America and now being found in the southwestern U.S., called the Chagas parasite, also known as the “kissing bug” for the red welts left on the victims’ faces after being bitten in his or her sleep.

“My job is to figure out what the enzyme looks like using X-ray diffraction,” Tanner said. “This enzyme makes a special sugar molecule that these organisms need to survive, so if we can find a way to stop the reaction that makes that sugar, then we might find a way to kill these pathogens.”

In Tanner’s lab at the University of Missouri, researcher Dale Karr is in the first stages of the process –growing tiny crystals of the enzyme. These crystals will eventually be used in X-ray crystallography, a technique in which diffraction patterns that are produced by bombarding crystals with intense X-ray beams are decoded to determine the atomic structure of the enzyme.  With this information, and Sobrado’s information on how the protein can be isolated and characterized, different drugs that may inhibit the enzyme can be designed and tested.

“The enzyme is like a lock, and if we can see what the lock looks like, we can find a key to fit in the lock and prevent the enzyme from being active,” said Tanner. “This is interesting because it’s a new project for us, and the collaboration with Pablo has enabled my group to enter a different field with a focus on drug design. That’s exciting for me; hopefully the fruits of our labor will some day help people.”

The National Institutes of Health (NIH) has given a $1.5 million grant to support the five-year research project.

Date: October 19, 2010
Source: University of Missouri

Related Articles Read More >

For the first time, scientists grow beating human-pig hearts for 21 days
Open-source Boltz-2 can speed binding-affinity predictions 1,000-fold
Thermo Fisher’s new Orbitrap Excedion Pro targets complex biotherapeutics for drug development
FDA’s new ‘Elsa’ AI set to expedite clinical protocol reviews
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE