Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Automating Biology Experiments With Legos

By Stanford University | March 27, 2017

Source:Nikirov / Shutterstock.com

Elementary and secondary school students who later want to become scientists and engineers often get hands-on inspiration by using off-the-shelf kits to build and program robots. But so far it’s been difficult to create robotic projects to foster interest in the “wet” sciences — biology, chemistry and medicine — so called because experiments in these field often involve fluids.

Now, Stanford bioengineers and their collaborators have shown how an off-the-shelf kit can be modified to create robotic systems capable of transferring precise amounts of fluids between flasks, test tubes and experimental dishes.

By combining the Lego Mindstorms robotics kit with a cheap and easy-to-find plastic syringe, the researchers created a set of liquid-handling robots that approach the performance of the far more costly automation systems found at universities and biotech labs.

“We really want kids to learn by doing,” said Ingmar Riedel-Kruse, PhD, assistant professor of bioengineering.

“We show that with a few relatively inexpensive parts, a little training and some imagination, students can create their own liquid-handling robots and then run experiments on it — so they learn about engineering, coding and the wet sciences at the same time,” he added.

A paper describing the work was published March 21 in PLoS Biology. Riedel-Kruse is the senior author. The lead author is postdoctoral scholar Lukas Gerber.

Robots meet biology

The robots are designed to pipette fluids from and into cuvettes and multiple-well plates — types of plastic containers commonly used in laboratories. Depending on the specific design, the robots can handle liquid volumes far smaller than 1 microliter, a droplet about the size of a single coarse grain of salt. Riedel-Kruse believes that these Lego designs might even be useful for specific professional or academic liquid-handling tasks that normally require robots costing many thousands of dollars.

His overarching idea is to enable students to learn the basics of robotics and the wet sciences in an integrated way. Students could learn to collaborate while also developing STEM skills, such as mechanical engineering and computer programming. (“STEM” stands for science, technology, engineering and mathematics.) They could also gain a deeper appreciation of the value of robots in life sciences experiments.

Riedel-Kruse said he drew inspiration from constructionism, a learning theory that advocates project-based learning in which students make tangible objects and connect different ideas and areas of knowledge and thereby construct mental models to understand the world around them. One of the leading theorists in the field was Seymour Papert, whose seminal 1980 book Mindstorms was the inspiration for the Lego Mindstorms sets.

“I saw how students and teachers were already using Lego robotics in and outside school, usually to build and program moving car-type robots, and I was excited by that,” he said. “But I saw a vacuum for bioengineers like me. I wanted to bring this kind of constructionist, hands-on learning with robots to the life sciences.”

Do it yourself

In their PLoS Biology paper, the team members offer step-by-step building plans and several fundamental experiments targeted to elementary, middle and high school students. They also offer experiments that students can conduct using common household consumables like food coloring, yeast or sugar. In one experiment, colored liquids with distinct salt concentrations are layered atop one another to teach about liquid density. Other tests measure whether liquids are acids, like vinegar, or bases, like baking soda, or which sugar concentration is best for yeast. Yet another experiment uses color-sensing light meters to align color-coded cuvettes.

The coding aspect of the robot is elementary, Riedel-Kruse said. A simple programming language allows students to place symbols telling the robot what to do: Start. Turn motor on. Do a loop. And so forth. The robots can be programmed and operated in different ways. In some experiments, students push buttons to actuate individual motors. In other experiments, students preprogram all motor actions to watch their experiments executed automatically.

“It’s kind of easy. Just define a few parameters, and the system works,” he said, adding, “These robots can support a range of educational experiments, and they provide a bridge between mechanical engineering, programming, life sciences and chemistry. They would be great as part of in-school and after-school STEM programs.”

STEM-ready

Riedel-Kruse said these activities meet several important goals for promoting multidisciplinary STEM learning as outlined by the Next Generation Science Standards and other national initiatives. He stressed the cross-disciplinary instruction value that integrates robotics, biology, chemistry, programming and hands-on learning in a single project.

The team has co-developed these activities with high school students and a science teacher, and then tested them with elementary and middle school students over the course of several weeks of instruction. These instructions for the robots are now ready for wider dissemination to an open-access community that can expand upon the plans, capabilities and experiments for this new breed of fluid-handling robots, and they might even be suitable to support certain research applications.

“We would love it if more students, do-it-yourself learners, STEM teachers and researchers would embrace this type of work, get excited and then develop additional open-source instructions and lesson plans for others to use,” Riedel-Kruse said.

Related Articles Read More >

5 R&D jobs that may be lost to AI and 5 that it could create
Dinner plate-sized chips with trillions of transistors could give traditional GPUs a run for their money
FDA’s AI tool Elsa signals new era for regulatory review, says QuantHealth CEO
Sonar Screen For Submarines And Ships. Radar Sonar With Object On Map. Futuristic HUD Navigation monitor
Pentagon places big bets on frontier AI, quantum sensing and next-gen avionics in nearly $3 billion in defense technology contracts 
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE