Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Next-Generation Quantum Telecommunications

By Lancaster University | July 21, 2017

This is one of the molecular beam epitaxy reactors at Lancaster University used to grow quantum rings. Source: Lancaster University

A Lancaster University physicist is working with industrial partners to develop quantum technologies which will revolutionise telecommunications.

Future quantum and classical optical communication technology requires the mass production of very low cost components which can be operated at room temperature and at telecoms wavelengths.

A patent is pending on the technologies which will enable mobile devices with unprecedented speed, uncrackable security and lower cost.

The patent will enable industrial partners to exploit this breakthrough which has been developed by Dr Manus Hayne from Lancaster University’s Department of Physics, a world-authority on self-assembled GaSb/GaAs quantum rings and their use in devices such as telecoms-wavelength VCSELs.

Dr Hayne is the academic lead on the QR-SPLED project, funded through Innovate UK and the Engineering and Physical Sciences Research Council (EPSRC), in the framework of the UK National Quantum Technologies Programme.

He said: “We will assess the feasibility of mass producing low-cost single-photon sources in the form of single-photon light emitting diodes (SPLEDs).

“These will exploit the unique properties of semiconductor nanostructures called self-assembled quantum rings, which we have recently used in novel Vertical Cavity Surface Emitting Lasers (VCSELs) that operate at very low currents and at temperatures up to 110 degrees C.”

The QR-SPLED industry partners are CST Global and IQE.

UK funding of the project ensures the critical knowledge and expertise generated by this project will remain in the UK, and allows the commercial partners to be at the forefront of the world’s emerging, next generation, quantum telecommunications driven, network security.

Related Articles Read More >

QED-C outlines road map for merging quantum and AI
Quantum computing hardware advance slashes superinductor capacitance >60%, cutting substrate loss
Hold your exaflops! Why comparing AI clusters to supercomputers is bananas
Why IBM predicts quantum advantage within two years
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE