Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Researchers Use Blue Waters to Study Interactions Between Musculoskeletal Systems and Environments

By National Center for Supercomputing Applications | September 24, 2018

The Blue Waters petascale computing facility at the National Center for Supercomputing Applications, located at the University of Illinois at Urbana-Champaign campus. (Photo: Courtesy of HorsePunchKid via Wikimedia Commons)

Take a dead fish, tie it to a string, and put it in a tank of water.

Then, slowly start moving the water through the tank, swirling it faster and faster.

Something seemingly miraculous happens—our scaled friend begins to swim.

No, it’s not a mysterious rising from the dead. Instead, this “zombie” fish is due to the interaction between the fish’s body and the water as it flows around him. Very similar to how wind can pick up and make a flag on a flagpole move, water can create movement in a fish, regardless of whether it is alive.

Illinois researcher, Blue Waters professor, and NCSA faculty affiliate Mattia Gazzola and his team are conducting research in an effort to understand how the brain, body, and fluid flow work together to produce a behavior. Gazzola’s interest in how organic organisms move, called biolocomotion, spans various facets of the problem: how computing, software and numerics, come together to provide better insights on biolocomotion. The biolocomotion problem is part of the larger research focus on developing biologically driven soft robotics and actuators that can be used to solve challenges in medicine. Their research was published earlier this year in Advanced Functional Materials and the team was just awarded a $2 million award from the National Science Foundation to “model, design, fabricate and study micrometer to centimeter size soft bio-hybrid robots that bring together artificial elements and living biological cells.”

The Blue Waters supercomputer at the National Center for Supercomputing Applications is an essential part of this research, due to the size and complexity of the simulations.

“For example, [with] some animals the flow can generate some instability in the body … that means [the animals] can swim without thinking or controlling the muscles of their body,” Gazzola says.

Being able to see interactions between body and flow opens up new possibilities for researchers aiming to make biohybrid systems—systems that combine an element found in nature with a new engineering element. As researchers determine ways the environment interacts with a body to produce movement without a neurosystem this may go even further.

“You learn how to put everything into the design [of the system] so you don’t need really complicated controls, and the environment and [the] body does all the work for you,” Gazzola says.

“Some of the things that we do can be run on much smaller scale, and still could be of interest, but the larger picture needs a machine like Blue Waters,” Gazzola says. “This is thousands of simulations. Each 3D flow simulation is billions of elements.”

Gazzola sees practical applications for the research, although they are still a way down the road. At the moment, they sound like something out of a futuristic movie.

“With these little biohybrid problems—very tiny, like one millimeter—imagine having them in your body and swimming in your body and doing something useful. These are biohybrids, so they’re powered by cells,” Gazzola says. “Imagine in the distant future taking some of your own cells and building a biohybrid. Then the biohybrid can transport some tiny drugs and deliver them somewhere in your body or carry some of your cells and patch your heart.”

Related Articles Read More >

Microsoft’s 4D geometric codes slash quantum errors by 1,000x
Berkeley Lab’s Dell and NVIDIA-powered ‘Doudna’ supercomputer to enable real-time data access for 11,000 researchers
QED-C outlines road map for merging quantum and AI
Quantum computing hardware advance slashes superinductor capacitance >60%, cutting substrate loss
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE