Atomic Wristwatches Coming Soon?
![]() |
The world’s most precise clock, on which all time-keeping and navigation systems are based, might be made as small as a wristwatch with a new design proposed by an international team of physicists.
Cesium atomic clocks are presently used to define the basic unit of time — the second — to co-ordinate and synchronize global timekeeping, GPS navigation systems, computers on the Internet and scientific equipment. However, these devices — known as fountain clocks — are very large and technically very complex. They employ magnets and lasers to hold in place a beam of cesium atoms passing through an intense field of microwave energy.
A new class of atomic clocks of at least equivalent accuracy could be made much smaller and simpler by trapping aluminium, gallium, cesium or rubidium atoms in a lattice of laser light operated at a specific “magic” wavelength, according to a new theory put forward by physicists at the University of Nevada and the University of New South Wales.
“We have determined these magic wavelengths and, theoretically, the accuracy is at least competitive to that of the most precise clocks existing today,” says theoretical physicist Scientia Professor Victor Flambaum who, along with colleague Vladimir Dzuba, belongs to UNSW’s School of Physics.