Sensor Traces Dopamine Released by Single Cells
MIT chemical engineers have developed an extremely sensitive detector that can track single cells’ secretion of dopamine, a brain chemical responsible for carrying messages involved in reward-motivated behavior, learning, and memory. Using arrays of up to 20,000 tiny sensors, the researchers can monitor dopamine secretion of single neurons, allowing them to explore critical questions about…
Innovative Sensors Uncover Single Protein Molecules
For the first time, MIT engineers have designed sensors that can detect single protein molecules as they are secreted by cells or even a single cell. These sensors, which consist of chemically modified carbon nanotubes, could help scientists with any application that requires detecting very small amounts of protein, such as tracking viral infection, monitoring…
A New Step Toward Artificial Photosynthesis
Plants and other photosynthetic organisms use a wide variety of pigments to absorb different wavelengths of light. MIT researchers have now developed a theoretical model to predict the spectrum of light absorbed by aggregates of these pigments, based on their structure. The new model could help guide scientists in designing new types of solar cells…
Better Sensing Through 3D Antibody Arrays
Exploiting a process known as molecular self-assembly, MIT chemical engineers have built three-dimensional arrays of antibodies that could be used as sensors to diagnose diseases such as malaria or tuberculosis. These sensors, which contain up to 100 stacked layers of antibodies, offer much more sensitivity than existing antibody-based sensors, which have only a single layer…
Biomarker Could Help Guide Cancer Therapy, Avoid Drug Resistance
MIT biologists have identified a new biomarker that can reveal whether patients with a particularly aggressive type of breast cancer will be helped by paclitaxel (commercially known as Taxol), one of the drugs most commonly used to treat this cancer. The findings could offer doctors a new way to choose drugs for this type of…
Engineers Design a New Weapon Against Bacteria
Bionic Spinach Can Sense Explosives
Spinach is no longer just a superfood: By embedding leaves with carbon nanotubes, MIT engineers have transformed spinach plants into sensors that can detect explosives and wirelessly relay that information to a handheld device similar to a smartphone. This is one of the first demonstrations of engineering electronic systems into plants, an approach that the…
A New Strategy for Choosing Cancer Drugs
Choosing the best treatment for a cancer patient is often an inexact science. Drugs that work well for some patients may not help others, and tumors that are initially susceptible to a drug can later become resistant. In a new approach to devising more personalized treatments, researchers at MIT and Dana-Farber Cancer Institute have developed…
To Produce Biopharmaceuticals on Demand, Just Add Water
Researchers at MIT and other institutions have created tiny freeze-dried pellets that include all of the molecular machinery needed to translate DNA into proteins, which could form the basis for on-demand production of drugs and vaccines. The pellets, which contain dozens of enzymes and other molecules extracted from cells, can be stored for an extended…
New Technique Images the Brain at Multiple Size Scales
MIT researchers have developed a new technique for imaging brain tissue at multiple scales, allowing them to peer at molecules within cells or take a wider view of the long-range connections between neurons. This technique, known as magnified analysis of proteome (MAP), should help scientists in their ongoing efforts to chart the connectivity and functions…