Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Deadly Mathematics: Venus Flytraps employ Calculation to Kill Prey

By R&D Editors | January 25, 2016

Deadly spiral of capture and disintegration: The red dots are glands. When the trap closes, forming a green stomach, these glands release a lytic enzyme cocktail, digest the victim, and incorporate the nutrients released from the building blocks of the meat. Courtesy of Sönke ScherzerCarnivorous plants, such as the Venus flytrap, depend on meals of insects to survive in nutrient-poor soil. They sense the arrival of juicy insects, lured by the plants’ fruity scent, with the aid of sensitive trigger hairs on the inner surfaces of their traps. Researchers have looked more closely at exactly how the plants decide when to keep their traps shut and begin producing their acidic, prey-decomposing cocktail of enzymes.

The short answer is: they count.

“The carnivorous plant Dionaea muscipula, also known as Venus flytrap, can count how often it has been touched by an insect visiting its capture organ in order to trap and consume the animal prey,” says Rainer Hedrich of Universität Würzburg in Germany.

To find out whether Venus flytraps record touches, in the new study, reported in the Cell Press journal Current Biology on January 21, 2016, Hedrich and his colleagues fooled the plants into thinking they’d landed an insect by applying increasing numbers of mechano-electric stimuli to their trap and monitoring their responses. The studies show that a single touch to the trigger hair is enough to generate a response, setting the trap into a “ready-to-go” mode. In other words, the plants make note but don’t snap just yet. It might be a false alarm, after all.

With the second stroke, the trap closes around the prey to form what Hedrich and his colleagues liken to a green stomach. As the prey attempt to escape, they wind up touching the mechano-sensitive trigger hairs again and again, which only serves to excite the plant further.

At this stage, the plant begins to produce a special touch hormone. After five triggers, glands on the inner surface of the trap also produce digestive enzymes and transporters to take up nutrients. Hedrich calls it a “deadly spiral of capture and disintegration.” This input also allows the plant to scale its production of costly ingredients to the size of the meal.

“The number of action potentials informs [the plant] about the size and nutrient content of the struggling prey,” Hedrich said. “This allows the Venus flytrap to balance the cost and benefit of hunting.”

Interestingly, the plants show a particularly marked increase in production of a transporter that allows them to take up sodium. It’s not clear exactly what the salt does for the plant, but the researchers suggest that it may have something to do with how Venus flytraps maintain the right balance of water inside their cell walls.

Hedrich and his colleagues are now sequencing the Venus flytrap genome. In those sequences, they expect to find additional clues about the plants’ sensory systems and chemistry needed to support a carnivorous lifestyle and about how those traits have evolved over time.

This work was supported by the European Research Council; MINECO; the International Research Group Program; the Deanship of Scientific Research, King Saud University; the Australian Research Council; and the Grain Research and Development Corporation.

Citation: Current Biology, Böhm and Scherzer et al.: “The Venus Flytrap Dionaea muscipula Counts Prey-Induced Action Potentials to Induce Sodium Uptake” http://dx.doi.org/10.1016/j.cub.2015.11.057

 

Related Articles Read More >

Why IBM predicts quantum advantage within two years
Aardvark AI forecasts rival supercomputer simulations while using over 99.9% less compute
This week in AI research: Latest Insilico Medicine drug enters the clinic, a $0.55/M token model R1 rivals OpenAI’s $60 flagship, and more
How the startup ALAFIA Supercomputers is deploying on-prem AI for medical research and clinical care
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE