Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Engineers model the threat of avalanches

By R&D Editors | July 24, 2012

Snow avalanches, a real threat in countries from Switzerland to Afghanistan, are fundamentally a physics problem: What are the physical laws that govern how they start, grow and move, and can theoretical modeling help predict them?

Cornell researchers have uncovered some clues. Graduate student Cian Carroll was lead author on a paper published in the journal Physics of Fluids in June that details a dynamic model for the acceleration and growth of what the researchers call the avalanching “cloud.” They hope their model can predict avalanche size, speed, density and other parameters to help in planning in high-risk areas, Carroll said.

Prior research on snow avalanches shows that a significant amount of mass is picked up at the “head” of a gravity current. The mass distributes into the rest of the current, or cloud, and this mass travels at the front of the cloud as it densifies, accelerates and grows — leading to natural disasters.

The researchers first looked at the mechanism responsible for the rapid pickup of snow that occurs within the first few meters of the current. They determined that a mechanism driven by pressure gradients penetrating within the snow pack destabilized and broke apart the snow particles.

They then looked at the area just above the snow pack to see the effect the snow pickup had on the overlying cloud and its associated pressure waves. They observed that varying densities changed how the internal velocity took shape in the cloud, which they checked with experiments performed in a water flume. Further simulations allowed them to look into greater details of the effects that viscosity has on current and how this changes the cloud’s swelling.

The paper was co-authored by Michel Louge, professor of mechanical and aerospace engineering, and Carroll’s adviser; as well as Barbara Turnbull of the University of Nottingham.

The research was supported by the American Chemical Society Petroleum Research Fund.

SOURCE

Related Articles Read More >

From solar system simulations to SaaS savings, how Codeium’s AI agent empowers non-coders and scientists alike
Aardvark AI forecasts rival supercomputer simulations while using over 99.9% less compute
Quantum Brilliance, Pawsey integrate room-temp quantum with HPC on NVIDIA GH200
Frontier supercomputer reveals new detail in nuclear structure
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE