Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Frequency Modulation Accelerates Research of Quantum Technologies

By Aalto University | May 30, 2017

Many modern technological advances and devices are based on understanding quantum mechanics. Compared to semiconductors, hard disk drives or lasers, quantum devices are different in the sense that they directly harness quantum states in the operation of the device. A big goal of the field is to develop a working quantum computer envisaged to outperform traditional computers in certain difficult computational tasks.

Researchers at University of Oulu and Aalto University have published a review article about physics related to quantum devices in the prestigious journal of Reports on Progress in Physics.

A central concept in quantum mechanics is that of energy level. When a quantum mechanical system, such as an atom, absorbs a quantum of energy from light, it becomes excited from a lower to a higher energy level. Changing the separation between the energy levels is called frequency modulation. In quantum devices, frequency modulation is utilized in controlling interactions, inducing transitions among quantum states and engineering artificial energy structures.

“The basis of quantum mechanical frequency modulation is known since the 1930s. However, the breakthrough of various quantum technologies in 2000s has created a need for understanding and better theoretical tools of quantum systems under frequency modulation,” says Matti Silveri, presently a postdoctoral researcher from University of Oulu.

Understanding and utilization of frequency modulation is important for developing more accurate quantum devices and faster quantum gates for the near-future small scale quantum computers. The research field of quantum devices and computing is rapidly growing and it has recently attracted also investments from major technology companies, such as, from Google, Intel, IBM and Microsoft.

“We wanted to review the recent experimental and theoretical progress with various different kinds of quantum systems under frequency modulation. We hope to accelerate the research in this field,” adds docent Sorin Paraoanu from Aalto University.

The article discusses the physics of frequency modulation in superconducting quantum circuits, ultracold atoms, nitrogen-vacancy centers in diamond and nanoelectromechanical resonators. With these platforms, energy levels can be accurately modulated with voltage, microwaves or lasers in various experimental settings. The theoretical results of the article are general and can be applied to various quantum systems.

Related Articles Read More >

QED-C outlines road map for merging quantum and AI
Quantum computing hardware advance slashes superinductor capacitance >60%, cutting substrate loss
Hold your exaflops! Why comparing AI clusters to supercomputers is bananas
Why IBM predicts quantum advantage within two years
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE