Research & Development World

  • Home Page
  • Topics
    • Aerospace
    • Archeology
    • Automotive
    • Biotech
    • Chemistry
    • COVID-19
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Market Pulse
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
      • Software
    • Semiconductors
  • 2021 R&D 100 Award Winners
    • R&D 100 Awards
    • 2020 Winners
    • Winner Archive
  • Resources
    • Digital Issues
    • Podcasts
    • Subscribe
  • Global Funding Forecast
  • Webinars

Fujitsu Develops High-Speed Technology to Process Deep Learning

By Fujitsu Laboratories | August 15, 2016

Fujitsu Laboratories announced the development of software technology that uses multiple GPUs to enable high-speed deep learning powered by the application of supercomputer software parallelization technology.

A conventional method to accelerate deep learning is to use multiple computers equipped with GPUs, networked and arranged in parallel. The issue with this method is that the effects of parallelization become progressively harder to obtain as the time required to share data between computers increases when more than 10 computers are used at the same time.

Fujitsu Laboratories has newly developed parallelization technology to efficiently share data between machines, and applied it to Caffe, an open source deep learning framework widely used around the world. To confirm effectiveness with a wide range of deep learning, Fujitsu Laboratories evaluated the technology on AlexNet(1), where it was confirmed to have achieved learning speeds with 16 and 64 GPUs that are 14.7 and 27 times faster, respectively, than a single GPU. These are the world’s fastest processing speeds(2), representing an improvement in learning speeds of 46% for 16 GPUs and 71% for 64 GPUs. With this technology, machine learning that would have taken about a month on one computer can now be processed in about a day by running it on 64 GPUs in parallel.

With this technology, research and development periods using deep learning can be shortened, enabling the development of higher-quality learning models. Fujitsu Laboratories aims to commercialize this technology as part of Fujitsu Limited’s AI technology, Human Centric AI Zinrai, as it works together with customers to put AI to use.

Details of this technology were announced at SWoPP 2016 (Summer United Workshops on Parallel, Distributed and Cooperative Processing), being held from August 8 to 10 in Matsumoto, Nagano Prefecture, Japan.

Development Background

In recent years, research into an AI method called deep learning has been ongoing, and the results have been rates of image, character and sound recognition that exceed those of humans.

Deep learning is a technology that has greatly improved the accuracy of recognition compared to previous technologies, but in order to achieve this it must repeatedly learn from huge volumes of data. This has meant that GPUs, which are better suited for high-speed operations than CPUs, have been widely used. However, huge amounts of time are required to learn from large volumes of data in deep learning, so deep learning software that operates multiple GPUs in parallel has begun to be developed.

Issues

Because there is an upper limit to the number of GPUs that can be installed in one computer, in order to use multiple GPUs, multiple computers have to be interconnected through a high-speed network, enabling them to share data while doing learning processing. Data sharing in deep learning parallel processing is complex, however, as shared data sizes and computation times vary, and operations are performed in order, simultaneously using the previous operating results. As a result, additional waiting time is required in communication between computers, making it difficult to achieve high-speed results, even if the number of computers is increased.

About the New Technology

By developing and applying two new technologies, Fujitsu Laboratories has achieved speed increases in learning processing. The first is a supercomputer software technology that executes communications and operations simultaneously and in parallel. The second changes processing methods according to the characteristics of the size of shared data and the sequence of deep learning processing. These two technologies limit the increase in waiting time between processing batches even with shared data of a variety of sizes.

Related Articles Read More >

TetraScience and PerkinElmer collaborate to provide cloud customers quicker improved scientific data outcomes
SwRI developing connected vehicle data exchange platform for Florida Department of Transportation
Sofar Ocean secures $39M to drive climate mitigation and adaptation
Mike McKee appointed as Dotmatics’ president to lead data-driven scientific research
2021 R&D Global Funding Forecast

Need R&D World news in a minute?

We Deliver!
R&D World Enewsletters get you caught up on all the mission critical news you need in research and development. Sign up today.
Enews Signup

R&D World Digital Issues

February 2020 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R& magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • 2022 Global Funding Forecast

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • Home Page
  • Topics
    • Aerospace
    • Archeology
    • Automotive
    • Biotech
    • Chemistry
    • COVID-19
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Market Pulse
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
      • Software
    • Semiconductors
  • 2021 R&D 100 Award Winners
    • R&D 100 Awards
    • 2020 Winners
    • Winner Archive
  • Resources
    • Digital Issues
    • Podcasts
    • Subscribe
  • Global Funding Forecast
  • Webinars