Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Giant Impacts Caused by interplanetary Collisions

By University of Bristol | February 5, 2019

One frame from the middle of a hydrodynamical simulation of a high-speed head-on collision between two 10 Earth-mass planets. The temperature range of the material is represented by four colours grey, orange, yellow and red, where grey is the coolest and red is the hottest. Such collisions eject a large amount of the silicate mantle material leaving a high-iron content, high-density remnant planet similar to the observed characteristics of Kepler-107c. Credit: Zoe Leinhardt and Thomas Denman, University of Bristol

Astronomers have found fresh evidence for significant planetary diversity within a single exoplanet system, suggesting that giant high-speed collisions are partly responsible for planetary evolution.

An international team of scientists led by Italy’s National Institute for Astrophysics (INAF) and involving physicists from the University of Bristol spent three years observing the exoplanetary system Kepler-107 via the Telescopio Nazionale Galileo in La Palma.

They gathered more than a hundred spectroscopic measurements of all four sub-Neptune mass planets in Kepler-107 – named after the NASA Kepler space telescope that discovered the exoplanetary system five years ago. Unlike Earth’s relation to the sun, the planets in the Kelper-107 system are much closer to each other and their host star (their equivalent of our sun). All of the planets have an orbital period of days as opposed to years.

It is not uncommon for the planet that is closest to the host star to be the densest due to heating and interaction with the host star which can cause atmosphere loss. However, as reported in Nature Astronomy, in the case of Kepler-107, the second planet, 107c, is denser than the first, 107b. So much so that 107c contains in its core an iron mass fraction at least twice as large as that of 107b, indicating that at some point, 107c had a head-on high-speed giant collision with a protoplanet of the same mass or more collisions with multiple planets of a lower mass. These impacts would have ripped off part of the rock and silicate mantle of Kepler-107c, suggesting that it is denser now than it was originally.

Bristol’s Dr. Zoe Leinhardt, computational astrophysicist and co-author of the paper, from the University of Bristol’s School of Physics, explains: “Giant impacts are thought to have had a fundamental role in shaping our current solar system. The moon is most likely the result of such an impact, Mercury’s high density may be also, and Pluto’s large satellite Charon was likely captured after a giant impact but until now, we hadn’t found any evidence of giant impacts occurring in planetary systems outside of our own.

“If our hypothesis is correct, it would connect the general model we have for the formation of our solar system with a planetary system that is very different from our own.”

Aldo Bonomo, researcher at INAF and lead author, said: “With this discovery we have added another piece in the understanding of the origin of the extraordinary diversity in composition of small exoplanets. We already had evidence that the strong irradiation of the star contributes to such diversity leading to partial or total erosion of the atmospheres of the hottest planets. However, stochastic collisions between protoplanets also play a role, and may produce drastic variations in the internal composition of an exoplanet, as we think it happened for Kepler-107c.”

Co-author Li Zeng, from the Harvard Origins of Life Initiative in the Department of Earth and Planetary Sciences and the Harvard-Smithsonian Center for Astrophysics, added: “This is one out of many interesting exoplanet systems that the Kepler space telescope has discovered and characterized. This discovery has confirmed earlier theoretical work suggesting that giant impact between planets has played a role during planet formation.”

Giant impacts are thought to have occurred in our own solar system. If catastrophic disruptions occur frequently in planetary systems, then astronomers predict finding many other examples like Kepler-107 as an increasing number of exoplanet densities are determined.

Related Articles Read More >

Sonar Screen For Submarines And Ships. Radar Sonar With Object On Map. Futuristic HUD Navigation monitor
Pentagon places big bets on frontier AI, quantum sensing and next-gen avionics in nearly $3 billion in defense technology contracts 
2025 R&D layoffs tracker hits 132,075 as Amazon CEO signals AI will cut more jobs
Trump lifts 50-year supersonic ban, paving way for 3.5-hour New York–London trips
Europa’s lost decade: What happens to $5 billion‑plus in planetary R&D when missions die?
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE