Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Gold DNA strands close electric circuits in biosensors

By R&D Editors | January 29, 2014

The researchers hope to create diagnostic test which can detect very small amounts of specific DNA molecules. Image: Ken WelchBy letting DNA strands grow together with gold, scientists at Uppsala Berzelii Centre for Neurodiagnostics and Science for Life Laboratory have developed a brand new concept for super sensitive diagnostics of different diseases. The study will be published in the upcoming issue of ACS Nano.

In the new study, the researchers have developed a new method for detecting DNA with an extremely strong signal. The method relies on growth of a DNA strand over a narrow gap between two electrodes in an electric circuit. The strand will only grow if a certain DNA molecule has bound to the surface of one electrode, which makes it possible to build diagnostic tests for detection of that specific DNA molecule.

“We believe that the incredibly strong signal registered when we succeed in growing a golden strand between the electrodes will be possible to turn into a diagnostic test with extreme sensitivity and specificity. Such tests are needed for many diseases where the DNA molecules you are looking for are present only in very small numbers,” says Prof. Mats Nilsson, Science for Life Laboratory, who has led the study.

DNA itself does not conduct electricity, but by adding nanoparticles of gold along the DNA strand, which is then thickened using a gold salt solution, thin gold threads are created within a few minutes which conduct electricity very effectively. When such a strand is created the resistance of the circuit decreases by a factor of a billion.

Camilla Russell, PhD student at Uppsala Berzelii Centre for Neurodiagnostics at Uppsala Univ. and the researcher who has carried out the work, sees great potential in the ‘golden strand’ method:

“It should be possible to build very simple test kits using this method, and one test kit can contain many separate sensors to trace a large number of different DNA molecules,” she says.

Fredrik Nikolajeff, director of Uppsala Berzelii Centre, sees a continued development of the project:

“This is a long-term project for developing new sensitive analysis methods which can be used for early diagnostics, for following how diseases develop and to speed up drug development. We want to continue supporting Camilla’s exciting results through a commercialisation process where we will cooperate with Uppsala University’s business collaboration unit UU Innovation,” he says.

Source: Uppsala Berzelii Centre for Neurodiagnostics at Uppsala Univ.

Related Articles Read More >

Floating solar mats clean polluted water — and generate power
Nanodots enable fine-tuned light emission for sharper displays and faster quantum devices
New photon-avalanching nanoparticles could enable next-generation optical computers
New “nose-computer interface” aims to upgrade Rover’s nose for better drug detection methods
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE