Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Graphene Triggers Clock Rates in Terahertz Range

By Helmholtz Zentrum Dresden-Rossendorf | September 10, 2018

Graphene — an ultrathin material consisting of a single layer of interlinked carbon atoms — is considered a promising candidate for the nanoelectronics of the future. In theory, it should allow clock rates up to a thousand times faster than today’s silicon-based electronics. Scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) and the University of Duisburg-Essen (UDE), in cooperation with the Max Planck Institute for Polymer Research (MPI-P), have now shown for the first time that graphene can actually convert electronic signals with frequencies in the gigahertz range — which correspond to today’s clock rates — extremely efficiently into signals with several times higher frequency. The researchers present their results in the scientific journal Nature.

Today’s silicon-based electronic components operate at clock rates of several hundred gigahertz (GHz), that is, they are switching several billion times per second. The electronics industry is currently trying to access the terahertz (THz) range, i.e., up to thousand times faster clock rates. A promising material and potential successor to silicon could be graphene, which has a high electrical conductivity and is compatible with all existing electronic technologies. In particular, theory has long predicted that graphene could be a very efficient “nonlinear” electronic material, i.e., a material that can very efficiently convert an applied oscillating electromagnetic field into fields with a much higher frequency. However, all experimental efforts to prove this effect in graphene over the past 10 years have not been successful.

“We have now been able to provide the first direct proof of frequency multiplication from gigahertz to terahertz in a graphene monolayer and to generate electronic signals in the terahertz range with remarkable efficiency,” explains Dr. Michael Gensch, whose group conducts research on ultrafast physics and operates the novel TELBE terahertz radiation source at the HZDR. And not only that — their cooperation partners led by Professor Dmitry Turchinovich, experimental physicist at the University of Duisburg-Essen (UDE), have succeeded in describing the measurements quantitatively well using a simple model based on fundamental physical principles of thermodynamics.

With this breakthrough, the researchers are paving the way for ultrafast graphene-based nanoelectronics: “We were not only able to experimentally demonstrate a long-predicted effect in graphene for the first time, but also to understand it quantitatively well at the same time,” emphasizes Turchinovich. “In my laboratory we have been investigating the basic physical mechanisms of the electronic nonlinearity of graphene already for several years. However, our light sources were not sufficient to actually detect and quantify the frequency multiplication clean and clear. For this, we needed experimental capabilities which are currently only available at the TELBE facility.”

Graphene converts electronic signals with frequencies in the gigahertz range extremely efficiently into signals with several times higher frequency. Image: Juniks/HZDR

The long-awaited experimental proof of extremely efficient terahertz high harmonics generation in graphene has succeeded with the help of a trick: The researchers used graphene that contains many free electrons, which come from the interaction of graphene with the substrate onto which it is deposited, as well as with the ambient air. If these mobile electrons are excited by an oscillating electric field, they share their energy very quickly with the other electrons in graphene, which then react much like a heated fluid: From an electronic “liquid,” figuratively speaking, an electronic “vapor” forms within the graphene. The change from the “liquid” to the “vapor” phase occurs within trillionths of a second and causes particularly rapid and strong changes in the conductivity of graphene. This is the key effect leading to efficient frequency multiplication.

The scientists used electromagnetic pulses from the TELBE facility with frequencies between 300 and 680 gigahertz and converted them in the graphene into electromagnetic pulses with three, five, and seven times the initial frequency, i.e. up-converted them into the terahertz frequency range.

“The nonlinear coefficients describing the efficiency of the generation of this third, fifth and seventh harmonic frequency were exceptionally high,” explains Turchinovich. “Graphene is thus possibly the electronic material with the strongest nonlinearity known to date. The good agreement of the measured values with our thermodynamic model suggests that we will also be able to use it to predict the properties of ultrahigh-speed nanoelectronic devices made of graphene.” Professor Mischa Bonn, Director of the MPI-P, who was also involved in this work, emphasizes: “Our discovery is groundbreaking. We have demonstrated that carbon-based electronics can operate extremely efficiently at ultrafast rates. Ultrafast hybrid components made of graphene and traditional semiconductors are also conceivable.”

The experiment was performed using the novel, superconducting-accelerator-based TELBE terahertz radiation source at the ELBE Center for High-Power Radiation Sources at the HZDR. Its hundred times higher pulse rate compared to typical laser-based terahertz sources made the measurement accuracy required for the investigation of graphene possible in the first place. A data processing method developed as part of the EU project EUCALL allows the researchers to actually use the measurement data taken with each of the 100,000 light pulses per second.

“For us there is no bad data,” says Gensch. “Since we can measure every single pulse, we gain orders of magnitude in measurement accuracy. In terms of measurement technology, we are at the limit of what is currently feasible.”

The first authors of the article are the two young scientists Hassan A. Hafez (UDE/MPI-P) and Sergey Kovalev (HZDR).

Source: Helmholtz Zentrum Dresden-Rossendorf

Related Articles Read More >

The emerging materials shaping next-generation semiconductor electronics
24 R&D trends that redefined 2024
Graphene-based flowmeter sensor measures nano-rate fluid flows, Part 3: The sensor
Graphene-based flowmeter sensor measures nano-rate fluid flows, Part 2: The graphene context
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE