Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Innovation could bring flexible solar cells, transistors

By R&D Editors | May 23, 2013

undefined

click to enlarge
 
Electron microscope images show a new material for transparent electrodes that might find uses in solar cells, flexible displays for computers and consumer electronics, and future “optoelectronic” circuits for sensors and information processing. The electrodes are made of silver nanowires covered with a material called graphene. At bottom is a model depicting the “co-percolating” network of graphene and silver nanowires. Image: Purdue University/Birck Nanotechnology Center   

Researchers have created a new type of transparent electrode that might find uses in solar cells, flexible displays for computers and consumer electronics, and future “optoelectronic” circuits for sensors and information processing.

The electrode is made of silver nanowires covered with a material called graphene, an extremely thin layer of carbon. The hybrid material shows promise as a possible replacement for indium tin oxide, or ITO, used in transparent electrodes for touchscreen monitors, cell phone displays, and flat-screen televisions. Industry is seeking alternatives to ITO because of drawbacks: It is relatively expensive due to limited abundance of indium, and it is inflexible and degrades over time, becoming brittle and hindering performance.

“If you try to bend ITO it cracks and then stops functioning properly,” says Purdue University doctoral student Suprem Das.

The hybrid material could represent a step toward innovations, including flexible solar cells and color monitors, flexible “heads-up” displays in car windshields and information displays on eyeglasses and visors.

“The key innovation is a material that is transparent, yet electrically conductive and flexible,” says David Janes, a professor of electrical and computer engineering.

Research findings were detailed in a paper appearing online in Advanced Functional Materials. The paper was authored by Das; visiting student Ruiyi Chen; graduate students Changwook Jeong and Mohammad Ryyan Khan; Janes and Muhammad A. Alam, a Purdue professor of electrical and computer engineering.

The hybrid concept was proposed in earlier publications by Purdue researchers, including a 2011 paper in Nano Letters. The concept represents a general approach that could apply to many other materials, says Alam, who co-authored the Nano Letters paper.

“This is a beautiful illustration of how theory enables a fundamental new way to engineer material at the nanoscale and tailor its properties,” he says.

Such hybrid structures could enable researchers to overcome the “electron-transport bottleneck” of extremely thin films, referred to as 2D materials.

Combining graphene and silver nanowires in a hybrid material overcomes drawbacks of each material individually: the graphene and nanowires conduct electricity with too much resistance to be practical for transparent electrodes. Sheets of graphene are made of individual segments called grains, and resistance increases at the boundaries between these grains. Silver nanowires, on the other hand, have high resistance because they are randomly oriented like a jumble of toothpicks facing in different directions. This random orientation makes for poor contact between nanowires, resulting in high resistance.

“So neither is good for conducting electricity, but when you combine them in a hybrid structure, they are,” Janes says.

The graphene is draped over the silver nanowires.

“It’s like putting a sheet of cellophane over a bowl of noodles,” Janes says. “The graphene wraps around the silver nanowires and stretches around them.”

Findings show the material has a low “sheet resistance,” or the electrical resistance in very thin layers of material, which is measured in units called “squares.” At 22 ohms per square, it is five times better than ITO, which has a sheet resistance of 100 ohms per square.

Moreover, the hybrid structure was found to have little resistance change when bent, whereas ITO shows dramatic increases in resistance when bent.

“The generality of the theoretical concept underlying this experimental demonstration—namely ‘percolation-doping’—suggests that it is likely to apply to a broad range of other 2D nanocrystaline material, including graphene,” Alam says.

Source: Purdue University

Related Articles Read More >

Floating solar mats clean polluted water — and generate power
Nanodots enable fine-tuned light emission for sharper displays and faster quantum devices
New photon-avalanching nanoparticles could enable next-generation optical computers
New “nose-computer interface” aims to upgrade Rover’s nose for better drug detection methods
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE