Research & Development World

  • Home Page
  • Topics
    • Aerospace
    • Archeology
    • Automotive
    • Biotech
    • Chemistry
    • COVID-19
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Market Pulse
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
      • Software
    • Semiconductors
  • 2021 R&D 100 Award Winners
    • R&D 100 Awards
    • 2020 Winners
    • Winner Archive
  • Resources
    • Digital Issues
    • Podcasts
    • Subscribe
  • Global Funding Forecast
  • Webinars

K Computer Runs Largest Ever Ensemble Simulation of Global Weather

By R&D Editors | July 25, 2014

K computer installed in the computer room. Each computer rack is equipped with about 100 CPUs. In the Computer Building, 800 or more computer racks are installed for the K computer.  Courtesy of RikenEnsemble forecasting is a key part of weather forecasting today. Computers typically run multiple simulations, called ensembles, using slightly different initial conditions or assumptions, and then analyze them together to try to improve forecasts. Now, in research published in Geophysical Research Letters, using Japan’s flagship 10-petaFLOPS K computer, researchers from the RIKEN Advanced Institute for Computational Science (AICS) have succeeded in running 10,240 parallel simulations of global weather, the largest number ever performed, using data assimilation to reduce the range of uncertainties.

The assimilation of the 10,240 ensemble data sets was made possible by a cross-disciplinary collaboration of data assimilation experts and eigenvalue solver scientists at RIKEN AICS.

The “Local Ensemble Transform Kalman Filter” (LETKF), an already efficient system, was further improved by a factor of eight using the “EigenExa” high-performance eigenvalue solver software, making possible a three-week computation of data from the 10,240 ensembles for simulated global weather. By analyzing the 10,240 equally probable estimates of atmospheric states, the team discovered that faraway observations, even going beyond 10,000 kilometers in distance, may have an immediate impact on eventual state of the estimation. This finding suggests the need for further research on advanced methods that can make better use of faraway observations, as this could potentially lead to an improvement of weather forecasts.

The following three research projects funded by the Japan Science and Technology Agency (JST) CREST programs contributed to this achievement:

  • “Innovating ‘Big Data Assimilation’ technology for revolutionizing very-short-range severe weather prediction” (led by Dr. Takemasa Miyoshi of RIKEN), a project in the research area of Advanced Application Technologies to Boost Big Data Utilization for Multiple-Field Scientific Discovery and Social Problem Solving (Research Supervisor: Prof. Yuzuru Tanaka of Hokkaido University)
  • “EBD: Extreme Big Data: Convergence of Big Data and HPC for Yottabyte Processing” (led by Prof. Satoshi Matsuoka of the Tokyo Institute of Technology with Dr. Takemasa Miyoshi of RIKEN acting as co-PI), which is a project in the Advanced Core Technologies for Big Data Integration area (Research Supervisor: Prof. Masaru Kitsuregawa of the National Institute of Informatics)
  • “Development of an Eigen-Supercomputing Engine using a Post-Petascale Hierarchical Model” (led by Prof. Tetsuya Sakurai of the University of Tsukuba with Dr. Toshiyuki Imamura of RIKEN acting as co-PI), a project in the Development of System Software Technologies for post-Peta Scale High Performance Computing (Research Supervisor: Dr. Akinori Yonezawa of RIKEN)

Reference: T. Miyoshi, K. Kondo, and T. Imamura “The 10240-member ensemble Kalman filtering with an intermediate AGCM”. Geophysical Research Letters, 2014, doi:10.1002/2014GL060863

Related Articles Read More >

Five simple ways to improve project management processes for your R&D team
ENPICOM launches display solution to accelerate antibody selection while maximizing precision
Groundbreaking research could help paramedics save the lives of pedestrian casualties 
R&D 100 winner of the day: Slycat
2021 R&D Global Funding Forecast

Need R&D World news in a minute?

We Deliver!
R&D World Enewsletters get you caught up on all the mission critical news you need in research and development. Sign up today.
Enews Signup

R&D World Digital Issues

February 2020 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R& magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • 2022 Global Funding Forecast

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • Home Page
  • Topics
    • Aerospace
    • Archeology
    • Automotive
    • Biotech
    • Chemistry
    • COVID-19
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Market Pulse
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
      • Software
    • Semiconductors
  • 2021 R&D 100 Award Winners
    • R&D 100 Awards
    • 2020 Winners
    • Winner Archive
  • Resources
    • Digital Issues
    • Podcasts
    • Subscribe
  • Global Funding Forecast
  • Webinars