Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Lasers Achieve Superior Anodes

By King Abdullah University of Science & Technology | July 31, 2018

Sodium-ion batteries have potential to replace the currently used lithium-ion batteries by using the cheaper (less than a thirtieth of the cost of lithium) and more abundant sodium resource. This has particular potential in Saudi Arabia, where sodium is readily available and easily extracted as a byproduct of water desalination, a significant source of potable water in the country.

Yet normal graphite, the dominant anode material in lithium-ion batteries, struggles to store or intercalate sodium ions because sodium ions are larger than lithium ions. Hard carbon is a type of disordered graphite that can store more sodium ions, hence increasing battery capacity. The problem is that making hard carbon requires temperatures of almost 1,000 degrees C.

The King Abdullah University of Science and Technology (KAUST) team led by Husam Alshareef has developed a process using a simple bench-top laser to make three-dimensional hard carbon directly on copper collectors without excessive temperatures or additional coating steps.

The team formed a polymer (urea-containing polyimide) sheet on copper and then exposed this sheet to strong laser light. By introducing nitrogen gas during the process, the team could replace some of the carbon atoms with nitrogen atoms, reaching an extremely high nitrogen level (13 atomic %), which is unattainable by other techniques. Thus, the three-dimensional graphene was more conductive, had expanded atomic spacing, and was directly bonded to the copper current collectors, eliminating the need for additional processing steps.

“We wanted to find a way to make three dimensional hard carbons without having to excessively heat our samples. This way we could form the hard carbon directly on copper collectors,” says Fan Zhang, a Ph.D. student in Alshareef’s group.

Laser treatment of a polymer coating on copper creates nitrogen-doped laser-scribed graphene (NLSG) for use as a sodium-ion battery anode. Image: Reproduced with permission from reference 1 ©2018 Wiley-VCH Verlag GmbH & Co. KGaA. Image created by Xavier Pita

The KAUST researchers fabricated sodium-ion batteries using their laser-formed anode material. Their device exhibited a coulombic efficiency that exceeds most reported carbonaceous anodes, such as hard and soft carbon, and a sodium-ion capacity better than most previous carbon anodes in sodium-ion batteries.

“I enjoyed learning from every member of Alshareef’s group, especially Fan Zhang, who was my closest mentor,” says Eman Alhajji, a KAUST Gifted Student Program (KGSP) intern and current undergraduate student at North Carolina State University, USA. Eman will join the group as a Ph.D. student next fall.

“Zhang and Alhajji set an admirable example of productive collaboration between KAUST graduate students and visiting KGSP interns. Their work opens a new direction in battery research, which can be extended to other energy-storage technologies,” says Alshareef.

Source: King Abdullah University of Science and Technology

Related Articles Read More >

The emerging materials shaping next-generation semiconductor electronics
24 R&D trends that redefined 2024
Graphene-based flowmeter sensor measures nano-rate fluid flows, Part 3: The sensor
Graphene-based flowmeter sensor measures nano-rate fluid flows, Part 2: The graphene context
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE