Research & Development World

  • Home Page
  • Topics
    • Aerospace
    • Archeology
    • Automotive
    • Biotech
    • Chemistry
    • COVID-19
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Market Pulse
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
      • Software
    • Semiconductors
  • 2021 R&D 100 Award Winners
    • R&D 100 Awards
    • 2020 Winners
    • Winner Archive
  • Resources
    • Digital Issues
    • Podcasts
    • Subscribe
  • Global Funding Forecast
  • Webinars

Major Therapeutic Advancement for Diabetics

By Oregon State University | May 8, 2018

Transparent transistors fabricated onto the sharp curves of a tiny glass tube are paving the way toward a therapeutic advance for the nearly 10 percent of the U.S. population who have diabetes.

The nanotechnology advance by Oregon State University researchers is a key step toward an artificial pancreas: a catheter that can detect blood sugar levels and transmit the info to a wearable, computerized insulin pump.

The work by Greg Herman and Xiaosong Du of the College of Engineering also represents a step toward better medical diagnostic techniques: fully transparent electronics that open the door to combined sensing and imaging technologies.

Earlier Herman and Du had fabricated amperometric glucose sensors onto a flat polymer film that was then wrapped around a catheter tube.

When tested in an animal model, however, the early devices tended to delaminate — the sensors would come apart from the film, or the film would peel off from the catheter.

Researchers addressed that problem by microcontact printing a-IGZO-FET-based sensors — amorphous indium gallium zinc oxide field effect transistor — directly onto glass tubes with a 1-millimeter radius. Traditional patterning technologies like photolithography and e-beam lithography have proved troublesome for highly curved surfaces, but microcontact printing worked well.

“It takes advantage of an elastomeric stamp’s ability to conform to curved substrates with minimal distortion of the printed pattern,” Herman says. “The adhesion of the film deposition is very good. For it to come off, you’d essentially have to take a file to it. It’s much more rugged than what we had before, and the electronic performance is excellent — it’s the same as when fabricated on a flat surface using non-printing methods. We used a glass tube in part to show off the device’s transparency.”

Catheters are metallic or plastic, so unlike a sensor-equipped contact lens Herman has also worked on, transparency isn’t necessarily required.

“But the idea is with a catheter, you could start integrating optical fibers that have the a-IGZO-FET sensors on them,” he says. “Some types of sensing need an optical response for detection, so if we can integrate an optical response with an electronic signal, we can expand the detection being done. Field effect sensing may increase the functionality and sensing range of optical sensing systems.”

Also, transparent field effect sensing can be melded with electrophysical and neural imaging devices and could greatly improve the sensitivity of an endoscope — a device inserted into the body to provide an internal view.

The artificial pancreas aspect of the research is particularly significant to those with Type 1 diabetes, also known as juvenile diabetes. Most of those patients — there are about 3 million in the U.S., with 30,000 new cases diagnosed each year — are already wearing an insulin pump, so adding glucose sensing to the catheter would simplify their lives.

Type 2 diabetics typically self-inject, so they would be better candidates for the sensor-equipped contact lens.

The Juvenile Diabetes Research Foundation and the National Science Foundation supported this research. Findings were published in Sensors and Actuators B: Chemical.

Source: Oregon State University

Related Articles Read More >

What are nanocatalysts?
What are nanostructures?
What are nanoparticles?
Breakthrough paves way for photonic sensing at the ultimate quantum limit
2021 R&D Global Funding Forecast

Need R&D World news in a minute?

We Deliver!
R&D World Enewsletters get you caught up on all the mission critical news you need in research and development. Sign up today.
Enews Signup

R&D World Digital Issues

February 2020 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R& magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • 2022 Global Funding Forecast

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • Home Page
  • Topics
    • Aerospace
    • Archeology
    • Automotive
    • Biotech
    • Chemistry
    • COVID-19
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Market Pulse
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
      • Software
    • Semiconductors
  • 2021 R&D 100 Award Winners
    • R&D 100 Awards
    • 2020 Winners
    • Winner Archive
  • Resources
    • Digital Issues
    • Podcasts
    • Subscribe
  • Global Funding Forecast
  • Webinars