Research & Development World

  • Home Page
  • Topics
    • Aerospace
    • Archeology
    • Automotive
    • Biotech
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Market Pulse
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Battery Technology
    • Imaging
    • Nanotechnology
    • Semiconductors
  • Controlled Environments
    • Cleanrooms
    • Graphene
    • Lasers
    • Regulations/Standards
    • Sensors
  • Scientific Computing
    • Big Data
    • HPC/Supercomputing
    • Informatics
    • Security
    • Software
  • R&D 100 Awards
    • ENTER NOW
    • 2020 Winners
    • Winner Archive
    • R&D 100 Conference
  • Resources
    • Digital Issues
    • Podcasts
    • Subscribe
  • 2021 Funding Forecast
  • COVID-19

New Technique Offers Faster, Safer Way to Optimize Industrial Chemical Reactions

By North Carolina State University | July 26, 2018

Researchers have developed a flow-based high-throughput screening technology that offers a faster, safer and less expensive means of identifying optimum conditions for performing high-pressure/high-temperature catalytic chemical reactions. The technique focuses on hydroformylation reactions, which are used to create a variety of commercial products.

Researchers have developed a flow-based high-throughput screening technology that offers a faster, safer and less expensive means of identifying optimum conditions for performing high-pressure/high-temperature catalytic chemical reactions. The technique focuses on hydroformylation reactions, which are used to create a variety of commercial products.

“Hydroformylation reactions are industrial processes that are used to make everything from plasticizers to detergents,” says Milad Abolhasani, corresponding author of a paper on the work and an assistant professor of chemical and biomolecular engineering at North Carolina State University. “The testing and analysis process for evaluating a single set of conditions using conventional techniques normally takes days. We can now do it in about 30 minutes.”

“Eastman uses the homogenous hydroformylation process to make secondary materials included in many products that enhance our quality of life in a material way, such as paints, pharmaceuticals and inks,” says Dawn Mason, the external innovation manager at Eastman Chemical Company. “Being able to provide technological improvements in a safer and more expeditious manner than previously available is what makes our partnership with NC State successful.”

The new technique uses extremely small samples – on the order of 11 microliters, rather than the milliliters used in conventional techniques. The new technique also integrates reagent preparation, reaction processes and analysis into a single sequence. An explanatory video regarding the work is available at https://www.youtube.com/watch?v=biyVA7eaL2Q.

“Most optimization processes involve multiple steps that are conducted at different work stations,” Abolhasani says. “That’s one reason they take so long. By integrating these steps into a single, continuous sequence, we’ve made the process significantly more efficient.”

The high-throughput flow chemistry technique and the smaller sample size also expedite the speed of the reaction. But speed isn’t the only advantage – the new technique is also safer. That’s because these reactions have to be conducted under high pressures, and at high temperatures, using toxic and flammable gases.

“Our technique minimizes human interaction with these gases, since most of the work is done by robots,” Abolhasani says. “Also, we use only 60 microliters of these gases, where conventional techniques use a few milliliters or more – that’s a difference of at least two orders of magnitude, and that means our process is safer.”

The relatively small sample sizes also save money. The catalysts and ligands used in the reactions are expensive. By using smaller samples, the process requires less amount of expensive ligands and catalyst material, reducing the relevant expense by two to three orders of magnitude.

“Ultimately, developing a more efficient technique for these reactions is important because it expedites R&D, allowing researchers to both improve manufacturing processes and to accelerate industry’s ability to identify new ligands that have commercial applications,” Abolhasani says.

Related Articles Read More >

Department of Energy to invest $25M in polymer upcyling, plastic waste reuse research
Study reveals platinum’s role in clean fuel conversion
R&D 100 winner of the day: Versatile Cold Spray (VCS)
An anode-free zinc battery that could someday store renewable energy

Need R&D World news in a minute?

We Deliver!
R&D World Enewsletters get you caught up on all the mission critical news you need in research and development. Sign up today.
Enews Signup
Tweets by @RandDWorld

R&D World Digital Issues

February 2020 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R& magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • 2021 Global Funding Forecast

Copyright © 2021 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • Home Page
  • Topics
    • Aerospace
    • Archeology
    • Automotive
    • Biotech
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Market Pulse
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Battery Technology
    • Imaging
    • Nanotechnology
    • Semiconductors
  • Controlled Environments
    • Cleanrooms
    • Graphene
    • Lasers
    • Regulations/Standards
    • Sensors
  • Scientific Computing
    • Big Data
    • HPC/Supercomputing
    • Informatics
    • Security
    • Software
  • R&D 100 Awards
    • ENTER NOW
    • 2020 Winners
    • Winner Archive
    • R&D 100 Conference
  • Resources
    • Digital Issues
    • Podcasts
    • Subscribe
  • 2021 Funding Forecast
  • COVID-19