Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

NVIDIA’s Next-Gen Pascal GPU Architecture to Provide 10X Speedup for Deep Learning Apps

By R&D Editors | March 18, 2015

Pascal will offer better performance than Maxwell on key deep-learning tasks. NVIDIA has announced that its Pascal GPU architecture, set to debut next year, will accelerate deep learning applications 10X beyond the speed of its current-generation Maxwell processors. NVIDIA CEO and co-founder Jen-Hsun Huang revealed details of Pascal and the company’s updated processor roadmap in front of a crowd of 4,000 during his keynote address at the GPU Technology Conference, in Silicon Valley.

“It will benefit from a billion dollars’ worth of refinement because of R&D done over the last three years,” he told the audience.

The rise of deep learning — the process by which computers use neural networks to teach themselves — led NVIDIA to evolve the design of Pascal, which was originally announced at last year’s GTC.

Pascal GPUs will have three key design features that will result in dramatically faster, more accurate training of richer deep neural networks — the human cortex-like data structures that serve as the foundation of deep learning research.

Along with up to 32 GB of memory — 2.7X more than the newly launched NVIDIA flagship, the GeForce GTX TITAN X — Pascal will feature mixed-precision computing. It will have 3-D memory, resulting in up to 5X improvement in deep learning applications.  And it will feature NVLink – NVIDIA’s high-speed interconnect, which links together two or more GPUs — that will lead to a total 10X improvement in deep learning.

Mixed-Precision Computing — for Greater Accuracy

Mixed-precision computing enables Pascal architecture-based GPUs to compute at 16-bit floating point accuracy at twice the rate of 32-bit floating point accuracy.

Increased floating point performance particularly benefits classification and convolution — two key activities in deep learning — while achieving needed accuracy.

3-D Memory — for Faster Communication Speed and Power Efficiency

Memory bandwidth constraints limit the speed at which data can be delivered to the GPU. The introduction of 3-D memory will provide 3X the bandwidth and nearly 3X the frame buffer capacity of Maxwell. This will let developers build even larger neural networks and accelerate the bandwidth-intensive portions of deep learning training.

Pascal will have its memory chips stacked on top of each other, and placed adjacent to the GPU, rather than further down the processor boards. This reduces from inches to millimeters the distance that bits need to travel as they traverse from memory to GPU and back. The result is dramatically accelerated communication and improved power efficiency.

NVLink — for Faster Data Movement

The addition of NVLink to Pascal will let data move between GPUs and CPUs five to 12 times faster than they can with today’s current standard, PCI-Express. This is greatly benefits applications, such as deep learning, that have high inter-GPU communication needs.

NVLink allows for double the number of GPUs in a system to work together in deep learning computations. In addition, CPUs and GPUs can connect in new ways to enable more flexibility and energy efficiency in server design compared to PCI-E.

Related Articles Read More >

From solar system simulations to SaaS savings, how Codeium’s AI agent empowers non-coders and scientists alike
Aardvark AI forecasts rival supercomputer simulations while using over 99.9% less compute
Quantum Brilliance, Pawsey integrate room-temp quantum with HPC on NVIDIA GH200
Frontier supercomputer reveals new detail in nuclear structure
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE