Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Pacemakers Powered by Light

By Louise Lerner, University of Chicago | December 12, 2018

University of Chicago scientists have pioneered a technique that could one day create a pacemaker that operates using tiny pulses of light.

“It’s essentially a tiny solar cell, which stimulates cardiac muscle in a very unique way,” said Bozhi Tian, an associate professor of chemistry who examines innovative ways to control biology with light.

In a study published Dec. 11 in the Proceedings of the Royal Academy of Sciences, Tian and his team describe how they created a flexible mesh out of silicon, that when activated by flashes of light, creates a tiny electrochemical effect that encourages the heart to beat.

They started with one of their own designs previously used to stimulate neurons, but made the mesh thinner to easily wrap around the heart and strewed tiny nanowires across its surface to attach to cardiac cells.

A small optical beam scans the area with a laser. Each flash activates the cells, causing the heart to beat at the same frequency as the light. (Scanning instead of directly shining on one area makes the device more efficient and avoids delivering too much energy to cells, which can damage them, Tian said.)

“Unlike today’s pacemakers, this method appears to ‘train’ the cardiac muscle to beat,” Tian said.

It takes awhile for the effect to kick in, but the muscles continue to fire for some time after the light pulses are stopped.

Key authors of the study include (from left): postdoctoral researcher Menahem Rotenberg, doctoral student Ramya Parameswaran and graduate student Kelliann Koehler. Image: Professor Bozhi Tian

The method is still early in development. If implanted in humans, the mesh could be injected at the target site, and a small optical fiber that would deliver the light pulses could be inserted through minimally invasive surgery, Tian said.

The research was facilitated by the University of Chicago Materials Research Science and Engineering Centers, the Searle Cleanroom, and the Argonne National Laboratory Center for Nanoscale Materials.

The first authors on the paper were Medical Scientist Training Program student Ramya Parameswaran and graduate student Kelliann Koehler. Other University of Chicago co-authors were postdoctoral researchers Menahem Rotenberg and Barbara Hissa, graduate student Edward Sudzilovsky, and undergraduates Kiela Moreno, Nivedina Sarma, Michael Burke, Thomas Hayes and Michael Paul.

Related Articles Read More >

6 essentials for seismic rated cleanrooms
Critical Spaces Control Platform
Phoenix Critical Spaces Control Platform uses automation to direct airflow
Endiatx
Endiatx aims to boldly go beyond traditional endoscopy and, eventually, redefine surgical scale
FMN Laboratory researcher in a cleanroom
Take our quiz to test your cleanroom IQ, covering everything from ISO Classes to ULPA filtration
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE