Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Researchers Produce First Scalable Graphene Yarns for Wearable Textiles

By University of Manchester | March 5, 2019

A team of researchers led by Dr. Nazmul Karim and Professor Sir Kostya Novoselov at The University of Manchester has developed a method to produce scalable graphene-based yarn.

Multi-functional wearable e-textiles have been a focus of much attention due to their great potential for healthcare, sportswear, fitness and aerospace applications.

Graphene has been considered a potentially good material for these types of applications due to its high conductivity, and flexibility. Every atom in graphene is exposed to its environment allowing it to sense changes in its surroundings, making it an ideal material for sensors.

Smart wearable textiles have experienced a renaissance in recent years through the innovation and miniaturization and wireless revolution.

There has been efforts to integrate textile-based sensors into garments; however current manufacturing processes are complex and time consuming, expensive, and the materials used are non-biodegradable and use unstable metallic conductive materials.

As published in ACS Nano, the process developed by the team based at the National Graphene Institute has the potential produce tons of conductive graphene-based yarn, using existing textile machineries and without adding to production costs.

In addition to producing the yarn in large quantities, they are washable, flexible, inexpensive and biodegradable.

Such sensors could be integrated to either a self-powered RFID or low-powered Bluetooth to send data wirelessly to mobile device.

One hindrance to the advancement of wearable e-textiles has been the bulky components required to power them. Previously it has also been difficult to incorporate these components without compromising the properties or comfort of the material, which has seen the rise of personal smart devices such as fitness watches.

The lead author Dr. Shaila Afroj, who carried out the project during her PhD, said, “To introduce a new exciting material such as graphene to a very traditional and well established textile industry, the greatest challenge is the scalability of the manufacturing process. Here we overcome this challenge by producing graphene materials and graphene-based textiles using a rapid and ultrafast production process. Our reported technology to produce thousand kilograms of graphene-based yarn in an hour is a significant breakthrough for the textile industry.”

Karim, the other lead author and Knowledge Exchange Fellow (Graphene) from the National Graphene Institute, said, “High performance clothing is going through a transformation currently, thanks to recent innovations in textiles. There has been growing interests from the textile community into utilizing excellent and multifunctional properties of graphene for smart and functional clothing applications.”

“We believe our ultrafast production process for graphene-based textiles would be an important step towards realizing next generation high performance clothing.”

Related Articles Read More >

The emerging materials shaping next-generation semiconductor electronics
24 R&D trends that redefined 2024
Graphene-based flowmeter sensor measures nano-rate fluid flows, Part 3: The sensor
Graphene-based flowmeter sensor measures nano-rate fluid flows, Part 2: The graphene context
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE