Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Simulations for Better Transparent Oxide Layers

By R&D Editors | September 2, 2014

Detail from a model of an amorphous oxide layer into which hydrogen atoms have been introduced in a targeted process. The tiny light-blue sphere on the bottom right is hydrogen; oxygen is represented by small red spheres; the other spheres stand for indium (gray), tin (blue), and gallium (pink). Courtesy of Fraunhofer IWMSmartphones, tablet computers, and ticket machines are just some of the many devices nowadays that are touchscreen-operated. These screens are based on special oxide layers that are transparent and conduct electricity. The technical term is TCO (transparent conducting oxide) layers. TCOs are also used on solar cells and in heated windows. So that the technology keeps pace with new products and applications, manufacturers are constantly improving the layers, making them better conductors of electricity and increasing their transparency — after all, when used in tablet computer or smartphone displays, users need to be able to see the content on the screen clearly through the layers. Any additional sheen caused by the oxide would be a problem. The same principle applies for solar cells: rather than impeding sunlight, the oxide layers must allow it to pass unobstructed into the cell. Accordingly, transparency and conductivity are the key elements that the developers of new oxide layers must consider — but the manufacturing temperature and the plasticity of the layers are also important.

Realistic simulation of atomic structure

Researchers at the Fraunhofer Institute for Mechanics of Materials IWM in Freiburg help manufacturers to optimize oxide layers. “We’ve developed a practical and effective method for simulating the properties of TCO layers,” says IWM scientist Dr. Wolfgang Körner. Most impressive of all is the fact that the scientists’ simulations of the layers’ atomic structure are highly realistic and take into account all possible atomic errors — irrespective of whether the layers are disordered, amorphous structures or crystalline, highly ordered ones. On the basis of these simulations, the scientists then investigate how well the electrons can move in the layer, in other words how well the oxide conducts electrical current. “We can specifically track how a layer’s density of states changes when we change its atomic structure,” explains Körner. The researchers can also establish whether light is absorbed or passes through the layer unobstructed, making it appear transparent. “Because we do the trial-and-error material tests on a computer, we can calculate the properties possessed by the respective material composition of the TCO being studied much faster and more cost-effectively than by traditional means,” says Körner. Through his projects, Körner is deepening our understanding of how the different properties of the oxide layers arise. This understanding is helping his industrial partners to improve their production and to obtain specific oxide layer properties.

The researchers have already managed to find the principal defects that occur in these layers. It is simply not possible to manufacture the structures with absolutely zero errors. As much as manufacturers want them to consist only of certain defined atoms such as zinc, tin, and oxygen, other atoms — hydrogen is a common culprit — have a habit of crashing the party, changing the layer’s conductivity and transparency. But what defects in atomic structure actually impair transparency? And how can we remove these defects to make the oxides more transparent? One of the researchers’ findings was that the transparency of certain oxides is improved by heating them once to a suitably high temperature or by heating them up in an oxygen-rich environment.

A second approach sees the scientists tackle the problem from the other end: they add various specifically defined atoms into the structure and simulate the effects this has on a layer’s properties. The goal here is to further boost conductivity and transparency by means of suitable “impurities” and to be able to design a material by computer in this way.

Related Articles Read More >

From solar system simulations to SaaS savings, how Codeium’s AI agent empowers non-coders and scientists alike
Aardvark AI forecasts rival supercomputer simulations while using over 99.9% less compute
Quantum Brilliance, Pawsey integrate room-temp quantum with HPC on NVIDIA GH200
Frontier supercomputer reveals new detail in nuclear structure
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE