Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Structure Control Simultaneously Unlocks Magnetization and Polarization

By R&D Editors | January 28, 2015

Scientists at the University of Liverpool have controlled the structure of a material to simultaneously generate both magnetization and electrical polarization, an advance which has potential applications in information storage and processing.

Researchers from the University’s School of Physical Sciences demonstrated that it is possible to unlock these properties in a material which initially displayed neither by making designed changes to its structure.

Magnets, such as the one in your fridge door or in the hard disk of your computer, have separate North and South poles, i.e. they are magnetically polar and have magnetization. There are also materials with positively and negatively charged electrical poles which have electrical polarization. Control of the direction of the magnetization or the polarization is a way of storing information.

To make a single material that has these two distinct properties – magnetization and electrical polarization – is difficult because the electronic requirements for obtaining them in a material are typically contradictory: materials characteristics, such as the crystal structure or the atomic composition, which favor polarization often disfavor magnetization.

However, materials where polarization and magnetization coexist at room temperature are potentially important for low-energy information technology applications.

For information storage, these materials can combine low-power electrical writing of information with non-destructive magnetic reading, while logic devices using them for information processing can work without charge current flow. The increasing energy consumption of computers and internet-enabled devices could be a significant future sustainability challenge.

Liverpool Materials Chemist, Professor Matthew Rosseinsky, says, “We were able to demonstrate that the magnetization and polarization are coupled by measuring the linear magnetoelectric coefficient, a key physical quantity for the integration of such materials in a device. This coupling arises because both properties are produced by the same single set atomic motions that we built in to the material.”

“There are a number of challenges still to address, particularly switching the polarization and making the material more electrically insulating, before applications of this material for information storage can be considered.”

“By designing-in the required atomic-level changes using both computation and experiment together, we produced three properties (polarization, magnetization, magnetoelectricity) from a material that initially displayed none of them.

“Design of materials properties at the atomic scale is difficult, as it is quite a different problem from designing a large-scale object like a bridge or a car, but would be very desirable across the whole spectrum of properties. We are currently working on materials design in other areas, such as batteries or solar energy harvesting, where improvements are also needed.”

The research is published in Science.

Release Date: January 23, 2015
Source: University of Liverpool 

Related Articles Read More >

Floating solar mats clean polluted water — and generate power
Nanodots enable fine-tuned light emission for sharper displays and faster quantum devices
New photon-avalanching nanoparticles could enable next-generation optical computers
New “nose-computer interface” aims to upgrade Rover’s nose for better drug detection methods
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE