Research & Development World

  • Home Page
  • Topics
    • Aerospace
    • Archeology
    • Automotive
    • Biotech
    • Chemistry
    • COVID-19
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Market Pulse
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
      • Software
    • Semiconductors
  • 2021 R&D 100 Award Winners
    • R&D 100 Awards
    • 2020 Winners
    • Winner Archive
  • Resources
    • Digital Issues
    • Podcasts
    • Subscribe
  • Global Funding Forecast
  • Webinars

Supercomputer Simulations Help Lay Foundation for Better, Greener Concrete

By R&D Editors | November 25, 2013

Suspended particles in a rheometer for NIST’s proposed mortar SRM. The spheres, which are color coded by their starting location in the rheometer, are suspended in a cement paste with properties derived from NIST’s cement paste SRM. Courtesy of Nicos Martys and Steven G. Satterfield, National Institute of Standards and TechnologyResearchers from the National Institute of Standards and Technology (NIST) are conducting simulations at the Argonne Leadership Computing Facility (ALCF) to advance the measurement science of concrete and to gain a fundamental understanding of how it flows.

NIST, an agency of the U.S. Department of Commerce, was established by Congress at the turn of the century to develop a measurement infrastructure to help improve U.S. industrial competitiveness. Today, NIST measurements support every technological creation from nanoscale devices to global communication networks.

For their project at the ALCF, the NIST research team is combining data from large-scale simulations with theoretical work and physical experiments to create Standard Reference Materials (SRMs) for concrete to allow for more accurate viscosity measurements. SRMs are certified and issued by NIST for use in quality control, regulatory compliance, product development, and scientific research for a wide variety of materials, including steel, rubber, and plastics.

NIST has developed and released its first SRM to calibrate rheometers (blender-like devices used to measure flow properties) for cement paste. The properties of that material were subsequently used as an input to the simulation code being run at the ALCF, which is feeding into the development of SRMs for mortar (cement and sand) and concrete (mortar and gravel). The mortar SRM is expected to be available soon.
“The reference materials that will be produced for the aggregates in mortar, for example, won’t be actual sand — they’ll be small spheres identical in size, shape, weight, and hardness,” said William George, NIST computer scientist and project principal investigator. “The reference material will be as close to sand as we can get, but its known properties will allow us to reproduce viscosity results in the field.”

The SRMs will enable accurate predictions of the flow of concrete, which is essential to exploring the use of new, more environmentally friendly ingredients for concrete mixtures. Alternative materials are key to helping reduce the energy consumption and pollution caused by manufacturing cement, one of the main components of concrete.

Additionally, the SRMs will help to improve the workability of concrete by creating standardized measurements that would allow builders to request a specific concrete formulation with reliable, repeatable results.
Due to the complex nature of concrete, which is a dense suspension comprised of water, cement, and an aggregate, such sand or gravel, the use of high-performance computers is required to develop methods that accurately measure its properties.

“You need massive amounts of memory for these simulations, and a machine that’s large enough to handle the load of computing the forces at work in the mix,” George said. “It’s a very computationally intensive problem, which is why we run it here at the ALCF where there are resources to match our needs.”

Building on their past ALCF work, which dates back to 2008, the NIST project was awarded another 20 million core-hours at the facility in 2013 through the U.S. Department of Energy’s Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program.

With the power of the ALCF’s supercomputers, the scientists are able to validate experimental findings and study dense suspensions in much more detail than can be done in a laboratory.
“In a lab experiment, you can’t see what’s going on inside the concrete,” said George. “You can’t see what causes the viscosity to change or what’s influencing it. But our computer simulations allow us to visualize the forces at work inside the suspension.”

Jim Collins is a science writer at Argonne National Laboratory. He may be reached at editor@ScientificComputing.com. Reprinted with permission from ALCF.

Related Articles Read More >

Frontier supercomputer debuts as world’s fastest, breaking exascale barrier
R&D 100 winner of the day: Mochi: Customizable Data Navigation Tool
Siemens collaborates with Pasqal to research quantum applications in computer aided engineering, simulation and testing
Q-CTRL and The Paul Scherrer Institute partner to support the scale-up of quantum computers
2021 R&D Global Funding Forecast

Need R&D World news in a minute?

We Deliver!
R&D World Enewsletters get you caught up on all the mission critical news you need in research and development. Sign up today.
Enews Signup

R&D World Digital Issues

February 2020 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R& magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • 2021 Global Funding Forecast

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • Home Page
  • Topics
    • Aerospace
    • Archeology
    • Automotive
    • Biotech
    • Chemistry
    • COVID-19
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Market Pulse
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
      • Software
    • Semiconductors
  • 2021 R&D 100 Award Winners
    • R&D 100 Awards
    • 2020 Winners
    • Winner Archive
  • Resources
    • Digital Issues
    • Podcasts
    • Subscribe
  • Global Funding Forecast
  • Webinars