Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

A potential target to thwart antibiotic resistance

By R&D Editors | June 11, 2013

Gut viruses called bacteriophage, or phage (red), harbor resistance genes that shield bacteria from antibiotics. The findings mean that drugs that target phages could offer a potential new path to mitigate antibiotic resistance. Image: Jenn HinkleBacteria in the gut that are under attack by antibiotics have allies no one had anticipated, a team of Harvard Univ. Wyss Institute scientists has found. Gut viruses that usually commandeer the bacteria, it turns out, enable them to survive the antibiotic onslaught, most likely by handing them genes that help them withstand the drug.

What’s more, the gut viruses, called bacteriophage or simply phage, deliver genes that help the bacteria to survive not just the antibiotic they’ve been exposed to, but other types of antibiotics as well, the scientists reported online in Nature. That suggests that phages in the gut may be partly responsible for the emergence of dangerous superbugs that withstand multiple antibiotics, and that drug targeting of phages could offer a potential new path to mitigate development of antibiotic resistance.

“The results mean that the antibiotic-resistance situation is even more troubling than we thought,” says senior author Jim Collins, PhD, a pioneer of synthetic biology and Core Faculty member at the Wyss Institute for Biologically Inspired Engineering, who is also the William F. Warren Distinguished Prof. at Boston Univ., where he leads the Center of Synthetic Biology.

Today disease-causing bacteria have adapted to antibiotics faster than scientists can generate new drugs to kill them, creating a serious global public-health threat. Patients who are hospitalized with serious bacterial infections tend to have longer, more expensive hospital stays, and they are twice as likely to die as those infected with antibiotic-susceptible bacteria, according to the World Health Organization. In addition, because first-line drugs fail more often than before, more expensive therapies must be used, raising health care costs.

In the past, Collins and other scientists have probed the ways gut bacteria adapt to antibiotics, but they’ve focused on the bacteria themselves. But Collins and Sheetal Modi, PhD, the lead author of the study and a postdoctoral fellow in Collins’ laboratory and at the Wyss Institute, knew that phage were also abundant in the gut, and that they were adept at ferrying genes from one bacterium to another.

The researchers wondered whether treating mice with antibiotics led phage in the gut to pick up more drug-resistance genes, and if so, whether that made gut bacteria stronger.

They gave mice either ciprofloxacin or ampicillin—two commonly prescribed antibiotics. After eight weeks, they harvested all the viruses in the mice’s feces, and identified the viral genes present by comparing them with a large database of known genes.

They found that the phages from antibiotic-treated mice carried significantly higher numbers of bacterial drug-resistance genes than they would have carried by chance. What’s more, phage from ampicillin-treated mice carried more genes that help bacteria fight off ampicillin and related penicillin-like drugs, while phage from ciprofloxacin-treated mice carried more genes that help them fight off ciprofloxacin and related drugs.

“When we treat mice with certain classes of drugs, we see enrichment of resistance genes to those drug classes,” Modi says.

The phage did more than harbor drug-resistance genes. They could also transfer them back to gut bacteria—a necessary step in conferring drug resistance. The researchers demonstrated this by isolating phage from either antibiotic-treated mice or untreated mice, then adding those phage to gut bacteria from untreated mice. Phage from ampicillin-treated mice tripled the amount of ampicillin resistance, while phage from ciprofloxacin-treated mice doubled the amount of ciprofloxacin resistance.

That was bad enough, but the scientists also found signs that the phage could do yet more to foster antibiotic resistance. That’s because gut phage from mice treated with one drug carried high levels of genes that confer resistance to different drugs, which means that the phage could serve as backup when bacteria must find ways to withstand a variety of antibiotics.

“With antibiotic treatment, the microbiome has a means to protect itself by expanding the antibiotic resistance reservoir, enabling bugs to come back to be potentially stronger and more resistant than before,” Collins says.

Source: Harvard Univ.

Related Articles Read More >

Eli Lilly facility
9 R&D developments this week: Lilly builds major R&D center, Stratolaunch tests hypersonic craft, IBM chief urges AI R&D funding
professional photo of wooly mammoth in nature --ar 2:1 --personalize sq85hce --v 6.1 Job ID: 47185eaa-b213-4624-8bee-44f9e882feaa
Why science ethicists are sounding skepticism and alarm on ‘de-extinction’
ALAFIA system speeds complex molecular simulations for University of Miami drug research
3d rendered illustration of the anatomy of a cancer cell
Funding flows to obesity, oncology and immunology: 2024 sales data show where science is paying off
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE