Research & Development World

  • Home Page
  • Topics
    • Aerospace
    • Archeology
    • Automotive
    • Biotech
    • Chemistry
    • COVID-19
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Market Pulse
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
      • Software
    • Semiconductors
  • 2021 R&D 100 Award Winners
    • R&D 100 Awards
    • 2020 Winners
    • Winner Archive
  • Resources
    • Digital Issues
    • Podcasts
    • Subscribe
  • Global Funding Forecast
  • Webinars

Algae blooms create their own favorable conditions

By R&D Editors | January 8, 2015

Cyanobacterial bloom in China’s Lake Taihu. Image: Cayelan CareyFertilizers are known to promote the growth of toxic cyanobacterial blooms in freshwater and oceans worldwide, but a new multi-institution study shows the aquatic microbes themselves can drive nitrogen and phosphorus cycling in a combined one-two punch in lakes.

The findings suggest cyanobacteria—sometimes known as pond scum or blue-green algae—that get a toe-hold in low-to-moderate nutrient lakes can set up positive feedback loops that amplify the effects of pollutants and climate change and make conditions even more favorable for blooms, which threaten water resources and public health worldwide. The findings shed new light on what makes cyanobacteria so successful and may lead to new methods of prevention and control.

The study appears in Ecosphere.

“We usually think of cyanobacteria as responders to human manipulations of watersheds that increase nutrient loading, but our findings show they can also be drivers of nitrogen and phosphorus cycling in lakes,” says Dartmouth Prof. Kathryn Cottingham, one of the study’s lead authors. “This is important because cyanobacteria are on the increase in response to global change—both warming temperatures and land use—and may be driving nutrient cycling in more lakes in the future, especially the clear-water, low-nutrient lakes that are so important for drinking water, fisheries and recreation.”

Biogeochemical cycling is the natural recycling of nutrients between living organisms and the atmosphere, land and water. The researchers found that cyanobacterial blooms can influence lake nutrient cycling and the ability of a lake to maintain its current conditions by tapping into pools of nitrogen and phosphorus not usually accessible to phytoplankton. The ability of many cyanobacterial organisms to fix dissolved nitrogen gas is a well-known potential source of nitrogen, but some organisms can also access pools of phosphorus in sediments and bottom waters. Both of these nutrients can subsequently be released to the water column via leakage or decomposing organisms, thereby increasing nutrient availability for other phytoplankton and microbes.

Source: Dartmouth College

Related Articles Read More >

Argonne webinar to explore the challenges of recycling lithium-ion batteries and solutions
U.S. DOE grants $25M to advance clean hydrogen technologies for electricity generation 
Advanced Ionics secures $4.2M for decarbonization of industrial hydrogen production
MilliporeSigma’s ZooMAb antibodies earns first-ever ACT Label from My Green Lab
2021 R&D Global Funding Forecast

Need R&D World news in a minute?

We Deliver!
R&D World Enewsletters get you caught up on all the mission critical news you need in research and development. Sign up today.
Enews Signup

R&D World Digital Issues

February 2020 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R& magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • 2022 Global Funding Forecast

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • Home Page
  • Topics
    • Aerospace
    • Archeology
    • Automotive
    • Biotech
    • Chemistry
    • COVID-19
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Market Pulse
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
      • Software
    • Semiconductors
  • 2021 R&D 100 Award Winners
    • R&D 100 Awards
    • 2020 Winners
    • Winner Archive
  • Resources
    • Digital Issues
    • Podcasts
    • Subscribe
  • Global Funding Forecast
  • Webinars