Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Antigene Therapy Offers Hope for Untreatable Diseases

By R&D Editors | October 22, 2010

Antigene therapy is a promising new treatment strategy that uses a DNA-based drug to pinpoint light energy to a target gene shutting down its activity. A review article published online ahead of print in Oligonucleotides, a peer-reviewed journal, details the possibilities and challenges for the clinical application of this novel photo-activated DNA modulating approach.

Netanel Kolevzon and Eylon Yavin, from The Hebrew University of Jerusalem (Israel), describe the mechanism behind antigene therapy in the article “Site-Specific DNA Photocleavage and Photomodulation by Oligonucleotide Conjugates.” They review the development of triplex-forming DNA-based drugs capable of up-regulating or inhibiting gene expression in a highly targeted and selective manner.

Unlike existing antisense therapies that target RNA, an antigene drug is a triplex-forming oligonucleotide that recognizes and attaches directly to a specific DNA sequence. By attaching a photoreactive agent to the antigene and delivering light energy to the attachment site, the light-sensitive drug complex becomes activated, triggering a cleavage or cross-linking reaction. This photo-induced, site-specific DNA damage effectively silences the gene target.

“Many obstacles lay ahead before this approach may reach the clinic,” caution the authors. However, if antigene therapy proves successful at blocking gene activity, “many diseases that are currently incurable or otherwise treatable with limited success could be potentially relevant targets for such an approach,” they conclude.

“This is a clever and potentially powerful approach to targeted regulation of gene expression,” says John Rossi, PhD, Co-Editor-in-Chief of Oligonucleotides and Professor in the Department of Molecular Biology, Beckman Research Institute of the City of Hope (Duarte, CA).

Date: October 21, 2010
Source: Hebrew University of Jerusalem

Related Articles Read More >

Open-source Boltz-2 can speed binding-affinity predictions 1,000-fold
Thermo Fisher’s new Orbitrap Excedion Pro targets complex biotherapeutics for drug development
FDA’s new ‘Elsa’ AI set to expedite clinical protocol reviews
Waters touts six-fold robustness with new Xevo TQ Absolute XR
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE