Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Antimicrobial Viruses Constructed from Breast Milk

By R&D Editors | January 21, 2016

The chemical structure of the nanoscale building block (left) and its assembly into a virus-like capsule (right, topographic AFM image).Scientists from the National Physical Laboratory (NPL) and University College London (UCL) have converted a breast milk protein into an artificial virus that kills bacteria on contact.

As well as providing all the energy and nutrients that infants need for the first months of life, breast milk protects against infectious diseases. Lactoferrin is a protein in milk which provides antimicrobial protection to infants, effectively killing bacteria, fungi, and even viruses.

The antimicrobial activities of this protein are mainly due to a tiny fragment, less than a nanometer across, made up of six amino acids. Based on the metrology of antimicrobial mechanisms, the team predicted that copies of this fragment gather at the same time, and at the same point, to attack bacterial cells by targeting and disrupting microbial membranes.

Recognizing the potential applications in the fight against antimicrobial resistance, the team re-engineered the fragment into a nanoscale building block which self-assembles into virus-like capsules, to effectively target bacteria (see figure below). Not only can these capsules recognize and bind to bacteria, but they also rapidly convert into membrane-damaging holes at precise landing positions.

Hasan Alkassem, a joint NPL/UCL EngD student who worked on the project, explains: “To monitor the activity of the capsules in real time we developed a high-speed measurement platform using atomic force microscopy. The challenge was not just to see the capsules, but to follow their attack on bacterial membranes. The result was striking: the capsules acted as projectiles porating the membranes with bullet speed and efficiency.”

Remarkably, however, these capsules do not affect surrounding human cells. Instead, they infected them like viruses do. When viruses are inside human cells they release their genes, which then use the body’s cellular machinery to multiply and produce more viruses. But if viral genes are replaced with drugs or therapeutic genes, viruses become effective tools in the pursuit of gene therapy to cure many diseases, from cancer to cystic fibrosis.

The research team explored this possibility and inserted model genes into the capsules. These genes were designed to switch off, or silence, a target process in human cells. The capsules harmlessly delivered the genes into the cells and effectively promoted the desired silencing. With therapeutic genes, this capability could be used to treat disorders resulting from a single mutated gene. Sickle-cell disease, cystic fibrosis or Duchenne muscular dystrophy are incurable at present, but can be cured by correcting corresponding mutated genes. The capsules therefore can serve as delivery vehicles for cures.

The findings are reported in Chemical Science — a journal of the Royal Society of Chemistry which publishes findings of exceptional significance from across the chemical sciences — and effectively demonstrate how measurement science can offer innovative solutions to healthcare, which build on and extend natural disease-fighting capabilities.

The study was funded by EPSRC, BBSRC, and the Department for Business, Innovation and Skills, with measurements performed at the Diamond Light Source.

Release Date: January 14, 2015
Source: National Physical Laboratory 

Related Articles Read More >

Eli Lilly facility
9 R&D developments this week: Lilly builds major R&D center, Stratolaunch tests hypersonic craft, IBM chief urges AI R&D funding
professional photo of wooly mammoth in nature --ar 2:1 --personalize sq85hce --v 6.1 Job ID: 47185eaa-b213-4624-8bee-44f9e882feaa
Why science ethicists are sounding skepticism and alarm on ‘de-extinction’
ALAFIA system speeds complex molecular simulations for University of Miami drug research
3d rendered illustration of the anatomy of a cancer cell
Funding flows to obesity, oncology and immunology: 2024 sales data show where science is paying off
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE