Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Bacteria Help Fight Viruses

By R&D Editors | June 18, 2012

Healthy humans harbor an enormous and diverse group of bacteria and other bugs that live within their intestines. These microbial partners provide beneficial aid in multiple ways from helping digest food to the development of a healthy immune system. In a new study published online in the journal Immunity, David Artis, PhD, associate professor of Microbiology, and Michael Abt, PhD, a postdoctoral researcher in the Artis lab, Perelman School of Medicine, University of Pennsylvania, show that commensal bacteria are also essential to fight off viral infections.

“From our studies in mice, we found that signals derived from these beneficial microbes are essential for optimal immune responses to experimental viral infections,” says Artis. “In one way we could consider these microbes as our ‘brothers in arms’ in the fight against infectious diseases.” Artis is also an associate professor of Pathobiology in the Penn School of Veterinary Medicine.

“From our studies in mice, we found that signals derived from these beneficial microbes are essential for optimal immune responses to experimental viral infections,” says Artis. “In one way we could consider these microbes as our ‘brothers in arms’ in the fight against infectious diseases.” Artis is also an associate professor of Pathobiology in the Penn School of Veterinary Medicine.

Signals from commensal bacteria influence immune-cell development and susceptibility to infectious or inflammatory diseases. Commensal microbial communities colonize barrier surfaces of the skin, vaginal, upper respiratory, and gastrointestinal tracts of mammals and consist of bacteria, fungi, protozoa, and viruses. The largest and most diverse microbial communities live in the intestine.

Previous studies in patients have associated alterations in bacterial communities with susceptibility to diabetes, obesity, cancer, inflammatory bowel disease, allergy, and other disorders. Despite knowing all of this, exactly how commensal bacteria regulate immunity after being exposed to pathogens is not well understood.

To get a better picture of how these live-in bacteria are beneficial, the Artis lab used several lines of investigation. First, they demonstrated that mice — treated with antibiotics to reduce numbers of commensal bacteria — exhibit an impaired antiviral immune response and a substantially delayed clearance of a systemic virus or influenza virus that infects the airways. What’s more, the treated mice had severely damaged airways and increased rate of death after the experimental influenza virus infection, demonstrating that alterations in commensal bacterial communities can have a negative impact on immunity against viruses.

Next, they profiled the genes that were expressed in immune cells called macrophages isolated from the antibiotic-treated mice. These data revealed a decreased expression of genes associated with antiviral immunity. In addition, macrophages from antibiotic-treated mice showed defective responses to interferons, proteins made and released in response to viruses, bacteria, parasites, or tumor cells. Under normal circumstances, interferons facilitate communication between cells to trigger the immune cells that attack pathogens or tumors. The antibiotic-treated mice also had an impaired capacity to limit viral replication. However, when mice were treated with a compound that restored interferon responsiveness, protective antiviral immunity was re-established.

“It is remarkable that signals derived from one type of microbe, in this case bacteria, can have such a profound effect on immune responses to viruses that are a very different type of microbe,” says first author Abt. “Just like we would set a thermostat to regulate when a heater should come on, our studies indicate that signals derived from commensal bacteria are required to set the activation threshold of the immune system.”

Taken together, these lines of evidence indicate that signals from commensal bacteria beneficially stimulate immune cells in a way that is optimal for antiviral immunity. “Although more work needs to be done, these findings could illuminate new ways to promote better immunity to potentially life-threatening viral infections,” adds Artis.

Date: September 10, 2012
Source: University of Pennsylvania

Related Articles Read More >

Eli Lilly facility
9 R&D developments this week: Lilly builds major R&D center, Stratolaunch tests hypersonic craft, IBM chief urges AI R&D funding
professional photo of wooly mammoth in nature --ar 2:1 --personalize sq85hce --v 6.1 Job ID: 47185eaa-b213-4624-8bee-44f9e882feaa
Why science ethicists are sounding skepticism and alarm on ‘de-extinction’
ALAFIA system speeds complex molecular simulations for University of Miami drug research
3d rendered illustration of the anatomy of a cancer cell
Funding flows to obesity, oncology and immunology: 2024 sales data show where science is paying off
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE