Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Behind a marine creature’s bright green fluorescent glow

By R&D Editors | July 2, 2014

Green fluorescent glow emitted by a lancelet, a marine animal also known as "amphioxus".Pushing closer to understanding the mechanisms behind the mysterious glow of light produced naturally by certain animals, scientists at Scripps Institution of Oceanography at UC San Diego have deciphered the structural components related to fluorescence brightness in a primitive sea creature.

In a study published in Scientific Reports, an open-access journal of the Nature Publishing Group, Dimitri Deheyn and his colleagues at Scripps Oceanography, the Air Force Research Laboratory, and the Salk Institute for Biological Studies have conducted the most detailed examination of green fluorescent proteins (GFPs) in lancelets, marine invertebrates also known as “amphioxus.” The fish-shaped animals, which spend much of their time in shallow coastal regions burrowed in sand except for their heads, offer unique insights on natural fluorescence since individual specimens can emit both very bright and much dimmer versions of the light, a rare capability in the animal kingdom.

The study carries implications for a variety of industries looking to maximize brightness of natural fluorescence—the process of transformation of blue “excitation” light into green “emission” light—including applications in biotechnology such as adapting fluorescence for biomedical protein tracers and for tracking the expression of specific genes in the human body.

In investigating the structural differences between the proteins with the two levels of light output, known to be generated by the GFPs inside amphioxus, Deheyn and his colleagues found that only a few key structural differences at the nanoscale allows the sea creature to emit different brightness levels. The differences relate to changes in stiffness around the animal’s “chromophore pocket,” the area of proteins responsible for molecular transformation of light, and thus light output intensity.

“We discovered that some of the amphioxus GFPs are able to transform blue light into green light with 100% efficiency (current engineered GFPs—traditionally rooted in the Cnidarian phylum—only reach 60 to 80 percent efficiency), which combines with other properties of light absorbance to make the amphioxus GFPs about five times brighter than current commercially available GFPs, resulting in effect to a huge difference,” said Deheyn. “It is also interesting that the same animal will also express similar GFPs with an efficiency of about 1,000 times less.”

Lab experiments examined the green fluorescence of the lancelet, a marine animal also known as amphioxus. Image: Dimitri Deheyn, Scripps Institution of Oceanography, UC San Diego.The exact mechanism that controls this ability of perfect efficiency during light transformation from blue to green remains unknown, Deheyn said, but this study opens doors towards its understanding.

“The most unique part of this discovery perhaps lays in the fact that for the first time, we show that different GFPs seem to have different functions within the same individual and unrelated to their ability to produce light, thus probably involving a biochemical role as well,” said Deheyn. “Nevertheless, having bright GFPs or the tool to increase brightness in current ones is critical for optimizing applications of fluorescence.”

Amphioxus are thought to use fluorescence for photo-protection (thus acting as sunscreen), as an antioxidant, and possibly for photo-sensing (using GFPs as receptors to the surrounding light) in their environment. Deheyn says learning more about bright-emitting GFPs in nature is useful for a variety of applications and fields of science.

“The U.S. Air Force, and the Department of Defense in general, uses a large variety of biosensors in biomedicine, bioengineering, and materials science, and providing proteins with the ability to be very bright can help technology advance because of better signal-to-noise ratio.”

Coauthors of the paper include Erin Bomati of Scripps Oceanography; Joy Haley of the Air Force Research Laboratory; and Joseph Noel of the Salk Institute for Biological Studies. The Air Force Office of Scientific Research supported the study.

Spectral and structural comparison between bright and dim green fluorescent proteins in Amphioxus

Source: Scripps Institution of Oceanography

Related Articles Read More >

For the first time, scientists grow beating human-pig hearts for 21 days
Open-source Boltz-2 can speed binding-affinity predictions 1,000-fold
Thermo Fisher’s new Orbitrap Excedion Pro targets complex biotherapeutics for drug development
FDA’s new ‘Elsa’ AI set to expedite clinical protocol reviews
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE