Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • 2025 R&D 100 Award Winners
    • 2025 Professional Award Winners
    • 2025 Special Recognition Winners
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
    • Content submission guidelines for R&D World
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Brain-computer Interfaces with Electric Current Stimulation aid Robotic Stroke Rehab

By R&D Editors | December 10, 2015

Set up for a brain computer interface rehabilitation system incorporating transcranial direct current stimulation. Reprinted from Ref. 1, Copyright 2015, with permission from Elsevier.Research that could help stroke victims with severe disabilities to regain control over their limbs has shown that stimulating the brain with electric current can help patients use brain-computer interfaces (BCIs) to interact with therapeutic robotic systems.

While repetitive exercises can help some stroke survivors regain control over their motor functions, not all patients are physically capable of executing the required movements. An alternative is ‘motor imagery,’ in which patients can try to repair impaired neurological pathways by imagining movements without physically executing them. Studies have shown motor imagery to be an effective neurological rehabilitation technique.

“Patients can imagine the movement of their limbs, but their thoughts cannot be seen by doctors that want to monitor their progress,” explains Kai Keng Ang from the A*STAR Institute for Infocomm Research. “A BCI lets us detect a patient’s thoughts using electroencephalogram (EEG) recordings, and then a feedback system moves the limb using robots. This shows patients if they have imagined the movement correctly.”

The combination of motor imagery and BCI feedback can help the brain rebuild damaged neural pathways, but is not successful with every patient. Ang and co-workers, in collaboration with researchers across Singapore and in Australia, wanted to investigate whether patients could get better at using a BCI if their brain was first subjected to transcranial direct current stimulation (tDCS) — the application of an external electric current to the skull.

The researchers selected 19 stroke patients with impaired arm movements. They randomly assigned 10 patients to receive tDCS for 20 minutes and nine patients to receive ‘sham-tDCS’ — in which current was only applied for the first 30 seconds to give the sensation of stimulation. The patients then underwent several BCI trials in which they were asked to imagine either moving their arm, or remaining idle.

The trials showed that the group receiving tDCS were significantly more accurate than the sham-tDCS group in generating the required motor imagery signals. The tDCS group also showed a higher indication of Event Related Desynchronisation, a well-established neurophysiological observation that when we move one of our hands or imagine the movement, the amplitude of certain EEG frequencies in the opposite hemisphere of the brain decreases.

The researchers hope that tDCS could soon be combined with existing rehabilitation techniques, and help more patients access the benefits of BCI therapy. “We are working on algorithms to improve the detection of motor imagery from EEGs, and conducting research on using tDCS with BCI for lower limb rehabilitation, such as walking,” says Ang.

The A*STAR-affiliated researchers contributing to this research are from the Institute for Infocomm Research. For more information about the team’s research, visit the Neural and Biomedical Technology Department Web page.

Reference

  1. Ang, K. K., Guan, C., Phua, K. S., Wang, C., Zhao, L. et al. Facilitating effects of transcranial direct current stimulation on motor imagery brain-computer interface with robotic feedback for stroke rehabilitation. Archives of Physical Medicine and Rehabilitation 96, S79–S87 (2015). | Article

Related Articles Read More >

Could AI smell cancer? Science says yes
R&D World announces 2025 R&D 100 Professional Award Winners
Elsevier’s 121 million data point database is now searchable by AI
6 R&D advances this week: a quantum computer in space and a record-breaking lightning bolt
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2025 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

R&D 100 Awards
Research & Development World
  • Subscribe to R&D World Magazine
  • Sign up for R&D World’s newsletter
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • 2025 R&D 100 Award Winners
    • 2025 Professional Award Winners
    • 2025 Special Recognition Winners
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
    • Content submission guidelines for R&D World
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE