Research & Development World

  • Home Page
  • Topics
    • Aerospace
    • Archeology
    • Automotive
    • Biotech
    • Chemistry
    • COVID-19
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Market Pulse
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
      • Software
    • Semiconductors
  • 2021 R&D 100 Award Winners
    • R&D 100 Awards
    • 2020 Winners
    • Winner Archive
  • Resources
    • Digital Issues
    • Podcasts
    • Subscribe
  • Global Funding Forecast
  • Webinars

Bucky-Balls Transform Into Buckybombs to Fight Cancer

By R&D Editors | March 19, 2015

Illustration/USC/Holly WilderIn 1996, a trio of scientists won the Nobel Prize for Chemistry for their discovery of Buckminsterfullerene – soccer-ball-shaped spheres of 60 joined carbon atoms that exhibit special physical properties.

Now, 20 years later, scientists have figured out how to turn them into Buckybombs.

These nanoscale explosives show potential for use in fighting cancer, with the hope that they could one day target and eliminate cancer at the cellular level – triggering tiny explosions that kill cancer cells with minimal impact on surrounding tissue.

“Future applications would probably use other types of carbon structures – such as carbon nanotubes, but we started with Bucky-balls because they’re very stable, and a lot is known about them,” says Oleg V. Prezhdo, professor of chemistry at the USC Dornsife College of Letters, Arts and Sciences and corresponding author of a paper on the new explosives that was published in The Journal of Physical Chemistry on Feb. 24.

Carbon nanotubes, close relatives of bucky-balls, are used already to treat cancer. They can be accumulated in cancer cells and heated up by a laser, which penetrates through surrounding tissues without affecting them, and targets carbon nanotubes directly. Modifying carbon nanotubes the same way as the buckybombs will make the cancer treatment more efficient – reducing the amount of treatment needed, Prezhdo says.

To build the miniature explosives, Prezhdo and his colleagues attached 12 nitrous oxide molecules to a single Bucky-Ball and then heated it. Within picoseconds, the Bucky-Ball disintegrated — increasing temperature by thousands of degrees in a controlled explosion.

The source of the explosion’s power is the breaking of powerful carbon bonds, which snap apart to bond with oxygen from the nitrous oxide, resulting in the creation of carbon dioxide, Prezhdo says.

Prezhdo collaborated with co-corresponding author Vitaly V. Chaban, who was at USC when the research was completed and is now at the Universidade Federal de São Paulo in Brazil with fellow co-corresponding author Eudes Eterno Fileti.

This research was funded by the São Paulo Research Foundation; the Brazilian National Council for Scientific and Technological Development; the U.S. Department of Energy (grant DE-SC0006527); and the Russian Science Foundation (project No. 14-43-00052).

The study can be found online at: http://pubs.acs.org/doi/abs/10.1021/acs.jpclett.5b00120 

Release Date: March 18, 2015
Source: USC  

Related stories
Buckyballs Contribute to Sustainable Energy Supply http://www.cemag.us/news/2015/01/buckyballs-contribute-sustainable-energy-supply
Buckyballs Enhance Carbon Capture http://www.cemag.us/news/2014/12/buckyballs-enhance-carbon-capture
Watch Buckyballs Grow in Real Time http://www.cemag.us/news/2014/11/watch-buckyballs-grow-real-time
Buckyballs and Diamondoids Join Forces in Tiny Electronic Gadget http://www.cemag.us/news/2014/09/buckyballs-and-diamondoids-join-forces-tiny-electronic-gadget
Researchers Discover Boron “Buckyball” http://www.cemag.us/news/2014/07/researchers-discover-boron-%E2%80%9Cbuckyball%E2%80%9D

Related Articles Read More >

New dangers in the woods — and the hope that research offers us
Novel mass spectrometry solution simplifies insight gathering into macromolecular complexes
ENPICOM launches display solution to accelerate antibody selection while maximizing precision
Thermo Fisher Scientific autoimmune-testing instruments now available in the U.S.
2021 R&D Global Funding Forecast

Need R&D World news in a minute?

We Deliver!
R&D World Enewsletters get you caught up on all the mission critical news you need in research and development. Sign up today.
Enews Signup

R&D World Digital Issues

February 2020 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R& magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • 2022 Global Funding Forecast

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • Home Page
  • Topics
    • Aerospace
    • Archeology
    • Automotive
    • Biotech
    • Chemistry
    • COVID-19
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Market Pulse
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
      • Software
    • Semiconductors
  • 2021 R&D 100 Award Winners
    • R&D 100 Awards
    • 2020 Winners
    • Winner Archive
  • Resources
    • Digital Issues
    • Podcasts
    • Subscribe
  • Global Funding Forecast
  • Webinars