Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Cancer the Result of Darwinian Struggle

By R&D Editors | June 10, 2009

Cancer is the result of Darwinian evolution among populations of cells, in which the fittest cells win the struggle for survival, while ultimately killing the person of whom they are a part.

The mutator hypothesis, which states that normal human cells increase their rate of genetic change as a mechanism for speeding up the transformation to cancer cells, has been a pivotal concept in cancer biology for over 30 years, influencing our ideas both of how cancer arises and of the challenges of developing cancer therapies.

According to this hypothesis, an early step in becoming a cancer cell is a “mutator mutation”, which causes the developing cancer to become genetically unstable. This accelerates the transformation of normal cells to cancer cells. It means that cancer cells are constantly changing, making them an elusive target for therapy.

However as a general concept applicable to all cancer, the mutator hypothesis has been debated on several grounds. Firstly, an increased mutation rate due to a mutator mutation could lead to an increased rate of random mutations that might reduce the fitness of the cell and its daughter cells (the “cell lineage”) to compete for survival, dooming it to extinction before it could become malignant. Secondly, rates of cancer appearance in people can possibly be explained without a mutator mutation, just by continuing mutation at normal rates, and growth and selection of cell lineages with increased fitness; that is, by normal evolution occurring in populations of cells.

In an article published in the open-access journal PLoS ONE, Robert A. Beckman, a Visitor in the Simons Center for Systems Biology at the Institute for Advanced Study in Princeton, New Jersey, mathematically analyses the mutator hypothesis and compares the cancer-generating efficiency of mutator and non-mutator pathways to cancer, taking into account representative fitness changes a cell might experience as it potentially evolves to cancer. These fitness changes can be represented as pathways through a “fitness landscape”, the equivalent of a topographic map of pathways to cancer.

Beckman had previously introduced the concept of efficiency in evaluating pathways to cancer. In previous work, he defined efficiency as the number of new cancer lineages expected to be created in the typical time it takes to develop cancer. He reasoned that, since most cancer cell lineages are eliminated by the body’s defenses, or fail to establish a blood supply, the most efficient pathways to cancer would likely be the ones responsible for most cancers in people. He then showed that in the special circumstance where there are no fitness changes, mutator pathways are the most efficient path to cancer, even though getting the mutator mutation is itself an extra step.

In the current work, he shows more generally that mutator pathways are in most cases the most efficient path to cancer, even in the presence of fitness changes from a variety of fitness landscapes, addressing the previous objections to the mutator hypothesis. He also shows that the mutation rate which most efficiently evolves normal cells to cancer cells is likely to be higher than the mutation rate which is most efficient for driving the evolution of species. These findings provide strong support for the mutator hypothesis.

If the mutator hypothesis is true, there may be implications for cancer therapy. Genetic instability may enable cancer cells to rapidly evolve resistance to therapy, or may even mean that minority cell populations within a cancer are already primed to resist therapy. Cancers which show more genetic instability may more readily evade any given therapy, and may require different strategies for treatment.

Date: June 9, 2009
Source: Public Library of Science 

Related Articles Read More >

professional photo of wooly mammoth in nature --ar 2:1 --personalize sq85hce --v 6.1 Job ID: 47185eaa-b213-4624-8bee-44f9e882feaa
Why science ethicists are sounding skepticism and alarm on ‘de-extinction’
ALAFIA system speeds complex molecular simulations for University of Miami drug research
3d rendered illustration of the anatomy of a cancer cell
Funding flows to obesity, oncology and immunology: 2024 sales data show where science is paying off
Health-related innovation in Morocco highlighted by resident inventor patenting activity
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE