Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Chip produces, detects specialized gas for biomedical analysis

By R&D Editors | May 23, 2014

Illustration of NIST chip that makes polarized xenon gas. Xenon atoms (green) are loaded into the chamber on the left. The xenon flows into the next chamber, where the atoms are polarized through collisions with rubidium atoms (red) that are illuminated with circularly polarized light. Then the xenon flows into the smaller chamber, where its polarization is measured, using the rubidium atoms in the same chamber as magnetometers. Atoms exit the chip from the chamber on the far right. Image: NISTA chip-scale device that both produces and detects a specialized gas used in biomedical analysis and medical imaging has been built and demonstrated at NIST. Described in Nature Communications, the new microfluidic chip produces polarized (or magnetized) xenon gas and then detects even the faintest magnetic signals from the gas.

Polarized xenon—with the atoms’ nuclear “spins” aligned like bar magnets in the same direction—can be dissolved in liquids and used to detect the presence of certain molecules. A chemical interaction with target molecules subtly alters the magnetic signal from the xenon; by detecting this change researchers can identify the molecules in a complex mixture. Polarized xenon is also used as a contrast agent to enhance images in experimental magnetic resonance imaging (MRI) of human lungs, but conventional systems for producing and using this gas can be as big as a car.

Researchers from NIST and three other institutions developed the new chip, which might be used to reduce the size and cost of some instruments that, like MRI, rely on nuclear magnetic resonance (NMR). The chip’s sensitive internal detector boosts the response of microfluidic NMR on small samples and eliminates the need for the powerful magnets associated with larger NMR devices such as those used in MRI. The microfabricated chip could be mass produced and integrated easily with existing microfluidic systems.

“We envision this device being an element in a more complex microfluidic NMR system, maybe for medical diagnostics,” NIST physicist and co-author John Kitching says.

The new device is related to NIST’s chip-scale magnetometer, but has additional capabilities and different applications, Kitching notes. Like the older NIST device, the new chip uses rubidium atoms as magnetometers to detect the xenon polarization, but they also multitask. The novel design also uses the rubidium atoms to polarize the xenon atoms, boosting their NMR response, and mixes the two types of atoms in the same chamber at the detection stage, which enhances the signal strength 500-fold.

The device is housed in a silicon and glass chip about 3-cm long with four small chambers connected by microchannels. In one chamber, circularly polarized light transfers angular momentum to the rubidium atoms’ electrons. The rubidium atoms then exchange spin with the nuclei of the xenon atoms, enhancing their polarization and hence the NMR signal.

The polarized xenon and rubidium atoms then flow into a detection chamber. Thanks to the atoms’ magnetic interactions the sensor can detect weak signals corresponding to fewer than one trillion polarized xenon atoms, a result competitive with low-field optical magnetometry.

The combination of a xenon polarizer and detector in the same device, together with the extraordinary sensitivity of the chip device, could help make polarized xenon technology portable and less expensive for biomedical and other applications outside research laboratories.

Source: NIST

Related Articles Read More >

Eli Lilly facility
9 R&D developments this week: Lilly builds major R&D center, Stratolaunch tests hypersonic craft, IBM chief urges AI R&D funding
professional photo of wooly mammoth in nature --ar 2:1 --personalize sq85hce --v 6.1 Job ID: 47185eaa-b213-4624-8bee-44f9e882feaa
Why science ethicists are sounding skepticism and alarm on ‘de-extinction’
ALAFIA system speeds complex molecular simulations for University of Miami drug research
3d rendered illustration of the anatomy of a cancer cell
Funding flows to obesity, oncology and immunology: 2024 sales data show where science is paying off
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE