Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Clean Water-Treatment Option Targets Sporadic Outbreaks

By University of Cincinatti | October 5, 2016

A University of Cincinnati scientist has engineered an environmentally friendly technology to zap outbreak-causing viruses and bacteria from public drinking water.

Environmental and biomedical engineer David Wendell, an associate professor in UC’s College of Engineering and Applied Science, developed a protein-based photocatalyst that uses light to generate hydrogen peroxide to eliminate E. coli,Listeria, and potentially protozoa like giardia and cryptosporidium.

If mass produced, he predicts this protein (called StrepMiniSog) could be used to safely “spike” the public water supply in the event of an outbreak.

“We designed this protein to attach to pathogens of interest using antibodies, so that when the attached photocatalyst is exposed to light it generates hydrogen peroxide and kills the pathogen,” said Wendell.

Importantly, Wendell points out that this technology neutralizes viruses and bacteria in water without adding troublesome contaminants — such as antibiotics or disinfection by-products — to the environment.

“In the environment or engineered water treatment systems there are many bacteria that you want to preserve,” he said. “We need a disinfectant that can ignore helpful bacteria while neutralizing pathogens responsible for sporadic outbreaks. It is essentially a seek-and-destroy technology where it will only attach to the organisms of interest. By using a selective approach we can preserve existing microbiomes, which makes them more resistance to opportunistic pathogens.”

Wendell said current methodologies for treating outbreaks involve increasing chlorine concentrations at water treatment plants, but too much chlorine can produce other types of water contamination, commonly referred to as disinfection byproducts (which are regulated by the EPA) and certain bacteria — Legionella for example — are gaining resistance to Chlorine. .

Wendell received a $500,000 grant as part of an NSF CAREER Award earlier this year to develop a mass-production system for his protein-based photocatalyst.

“I think it is feasible to have a mass-production technology in less than five years,” Wendell said.

His recent publication in the journal PLOS was titled “Selective Photocatalytic Disinfection by Coupling StrepMiniSog to the Antibody Catalyzed Water Oxidation Pathway” and was written in conjunction with former graduate student Elizabeth Wurtzler.

Beyond the potential use in water treatment, Wendell adds that the technology could also be used as a personal disinfectant product. And unlike antibacterial products (which kill all types of bacteria, including helpful types) his would target only harmful pathogens.

“The technology is also very useful for any sort of surface disinfection, including treating human skin,” said Wendell.

Related Articles Read More >

Floating solar mats clean polluted water — and generate power
New AI model offers faster, adaptive CO₂ retrieval from satellite data
8 major R&D moves this week: Samsung invests record $24B while Porsche cuts 3,900 jobs
Ex-Google AI team launches “Generation,” an AI-driven fragrance venture
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE