Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Electron Bottleneck Spotted in Simulated Battery

By Sarah Yang, Berkeley Lab | July 1, 2016

An international team of scientists that includes researchers at the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) has revealed how interactions between electrons and ions can slow down the performance of a material considered key to the next generation of batteries.

As the appetite grows for more efficient vehicles and mobile devices based on cleaner, renewable energy sources, so does the demand for equally efficient, lightweight and energy-dense batteries that pack more punch, last longer and charge or discharge more quickly. The compound vanadium pentoxide, with its layered atomic structure, has grabbed the spotlight as a potential nanostructured material for state-of-the-art lithium-ion batteries because it can provide a greater surface area for the arrival and insertion of lithium ions. That quality makes vanadium pentoxide a good candidate as a cathode, the part of a battery where electrons and lithium ions enter.

“The speed with which electrons can enter and exit the cathode determines how much power the battery can provide and how quickly it can be recharged, both critical factors to consider in the world of mobile electronics or electrification of our automotive fleet,” says David Prendergast, staff scientist at the Molecular Foundry, a DOE Office of Science User Facility located at Berkeley Lab.

Read more in this CE exclusive article: Nanoscience Research at The Molecular Foundry

A scanning electron microscopy image of vanadium pentoxide nanowires. The inset shows a ball-and-stick model of vanadium pentoxide’s atomic structure before and after inserting lithium ions. Image: Texas A&M University

But despite vanadium pentoxide’s potential, it has yet to be widely adopted commercially because of its less-than-stellar performance when put to the test in the real world.

The new findings, published in the journal Nature Communications, shed light on the slowdown, showing that the flow of electrons in vanadium pentoxide nanowires gets bogged down as it interacts with lithium ions in a phenomenon known as “small polaron formation.”

The study is led by Sarbajit Banerjee, professor of chemistry at Texas A&M University and a user of Berkeley Lab’s The Molecular Foundry. Banerjee’s team worked with Prendergast and postdoctoral fellow Yufeng Liang on this discovery through a user project at the Molecular Foundry.

The Banerjee group made 2D maps of the electronic properties of synthesized vanadium pentoxide nanowires serving as a model lithium-ion cathode using Scanning Transmission X-ray Microscopy at The Canadian Light Source. They came to the Molecular Foundry to interpret their findings.

These nanoscale measurements provided evidence that electrons in vanadium pentoxide sit predominantly on vanadium atoms near lithium ions and induce a distortion in the surrounding crystal structure. The combination of a charged particle — the electron — and an associated local structural distortion is referred to as a “small polaron.”

“Small polarons have been proposed as the cause of the slowdown in lithium-ion transport inside cathode materials, but they had not been seen directly until now,” says Liang. “With the help of our simulation techniques, we were able to decipher the polaron information buried in the X-ray spectra.”

“The electrons, once coupled with the lithium ions, appear content to sit instead of moving freely, in essence, trapping or stranding the flow of energy,” Prendergast adds.

Now that the bottleneck has been verified, the researchers said that attention can be turned to finding ways to design materials that free up the flow of electrons.

The National Science Foundation helped support the work of Banerjee, while the U.S. Department of Energy supported theoretical and computational activity at The Molecular Foundry.

Source: Berkeley Lab

Related Articles Read More >

2025 R&D layoffs tracker tops 92,000
Efficiency first: Sandia’s new director balances AI drive with deterrent work
Ex-Google CEO details massive AI energy needs at House hearing, advocates for fusion and SMR R&D
Floating solar mats clean polluted water — and generate power
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE